3,759 research outputs found

    Orthogonal Codes for Robust Low-Cost Communication

    Full text link
    Orthogonal coding schemes, known to asymptotically achieve the capacity per unit cost (CPUC) for single-user ergodic memoryless channels with a zero-cost input symbol, are investigated for single-user compound memoryless channels, which exhibit uncertainties in their input-output statistical relationships. A minimax formulation is adopted to attain robustness. First, a class of achievable rates per unit cost (ARPUC) is derived, and its utility is demonstrated through several representative case studies. Second, when the uncertainty set of channel transition statistics satisfies a convexity property, optimization is performed over the class of ARPUC through utilizing results of minimax robustness. The resulting CPUC lower bound indicates the ultimate performance of the orthogonal coding scheme, and coincides with the CPUC under certain restrictive conditions. Finally, still under the convexity property, it is shown that the CPUC can generally be achieved, through utilizing a so-called mixed strategy in which an orthogonal code contains an appropriate composition of different nonzero-cost input symbols.Comment: 2nd revision, accepted for publicatio

    Error Exponents for Variable-length Block Codes with Feedback and Cost Constraints

    Get PDF
    Variable-length block-coding schemes are investigated for discrete memoryless channels with ideal feedback under cost constraints. Upper and lower bounds are found for the minimum achievable probability of decoding error Pe,min⁑P_{e,\min} as a function of constraints R, \AV, and Ο„Λ‰\bar \tau on the transmission rate, average cost, and average block length respectively. For given RR and \AV, the lower and upper bounds to the exponent βˆ’(ln⁑Pe,min⁑)/Ο„Λ‰-(\ln P_{e,\min})/\bar \tau are asymptotically equal as Ο„Λ‰β†’βˆž\bar \tau \to \infty. The resulting reliability function, limβ‘Ο„Λ‰β†’βˆž(βˆ’ln⁑Pe,min⁑)/Ο„Λ‰\lim_{\bar \tau\to \infty} (-\ln P_{e,\min})/\bar \tau, as a function of RR and \AV, is concave in the pair (R, \AV) and generalizes the linear reliability function of Burnashev to include cost constraints. The results are generalized to a class of discrete-time memoryless channels with arbitrary alphabets, including additive Gaussian noise channels with amplitude and power constraints

    A Simple Derivation of the Refined Sphere Packing Bound Under Certain Symmetry Hypotheses

    Full text link
    A judicious application of the Berry-Esseen theorem via suitable Augustin information measures is demonstrated to be sufficient for deriving the sphere packing bound with a prefactor that is Ξ©(nβˆ’0.5(1βˆ’Espβ€²(R)))\mathit{\Omega}\left(n^{-0.5(1-E_{sp}'(R))}\right) for all codes on certain families of channels -- including the Gaussian channels and the non-stationary Renyi symmetric channels -- and for the constant composition codes on stationary memoryless channels. The resulting non-asymptotic bounds have definite approximation error terms. As a preliminary result that might be of interest on its own, the trade-off between type I and type II error probabilities in the hypothesis testing problem with (possibly non-stationary) independent samples is determined up to some multiplicative constants, assuming that the probabilities of both types of error are decaying exponentially with the number of samples, using the Berry-Esseen theorem.Comment: 20 page

    Asymptotic Estimates in Information Theory with Non-Vanishing Error Probabilities

    Full text link
    This monograph presents a unified treatment of single- and multi-user problems in Shannon's information theory where we depart from the requirement that the error probability decays asymptotically in the blocklength. Instead, the error probabilities for various problems are bounded above by a non-vanishing constant and the spotlight is shone on achievable coding rates as functions of the growing blocklengths. This represents the study of asymptotic estimates with non-vanishing error probabilities. In Part I, after reviewing the fundamentals of information theory, we discuss Strassen's seminal result for binary hypothesis testing where the type-I error probability is non-vanishing and the rate of decay of the type-II error probability with growing number of independent observations is characterized. In Part II, we use this basic hypothesis testing result to develop second- and sometimes, even third-order asymptotic expansions for point-to-point communication. Finally in Part III, we consider network information theory problems for which the second-order asymptotics are known. These problems include some classes of channels with random state, the multiple-encoder distributed lossless source coding (Slepian-Wolf) problem and special cases of the Gaussian interference and multiple-access channels. Finally, we discuss avenues for further research.Comment: Further comments welcom
    • …
    corecore