80 research outputs found

    On one-sided, D-chaotic CA without fixed points, having continuum of periodic points with period 2 and topological entropy log(p) for any prime p

    Get PDF
    A method is known by which any integer n2\, n\geq2\, in a metric Cantor space of right-infinite words A~nN\,\tilde{A}_{n}^{\,\mathbb N}\, gives a construction of a non-injective cellular automaton (A~nN,F~n),\,(\tilde{A}_{n}^{\,\mathbb N},\,\tilde{F}_{n}),\, which is chaotic in Devaney sense, has a radius r=1,\, r=1,\, continuum of fixed points and topological entropy log(n).\, log(n).\, As a generalization of this method we present for any integer n2,\, n\geq2,\, a construction of a cellular automaton (AnN,Fn),\,(A_{n}^{\,\mathbb{N}},\, F_{n}),\, which has the listed properties of (A~nN,F~n),\,(\tilde{A}_{n}^{\,\mathbb N},\,\tilde{F}_{n}),\, but has no fixed points and has continuum of periodic points with the period 2. The construction is based on properties of cellular automaton introduced here (BN,F)\,(B^{\,\mathbb N},\, F)\, with radius 11 defined for any prime number p.\, p.\, We prove that (BN,F)\,(B^{\,\mathbb N},\, F)\, is non-injective, chaotic in Devaney sense, has no fixed points, has continuum of periodic points with the period 22 and topological entropy \(\, log(p).\,\

    Continuous Lebesgue measure-preserving maps on one-dimensional manifolds: a survey

    Full text link
    We survey the current state-of-the-art about the dynamical behavior of continuous Lebesgue measure-preserving maps on one-dimensional manifolds

    Topological Groups: Yesterday, Today, Tomorrow

    Get PDF
    In 1900, David Hilbert asked whether each locally euclidean topological group admits a Lie group structure. This was the fifth of his famous 23 questions which foreshadowed much of the mathematical creativity of the twentieth century. It required half a century of effort by several generations of eminent mathematicians until it was settled in the affirmative. These efforts resulted over time in the Peter-Weyl Theorem, the Pontryagin-van Kampen Duality Theorem for locally compact abelian groups, and finally the solution of Hilbert 5 and the structure theory of locally compact groups, through the combined work of Andrew Gleason, Kenkichi Iwasawa, Deane Montgomery, and Leon Zippin. For a presentation of Hilbert 5 see the 2014 book “Hilbert’s Fifth Problem and Related Topics” by the winner of a 2006 Fields Medal and 2014 Breakthrough Prize in Mathematics, Terence Tao. It is not possible to describe briefly the richness of the topological group theory and the many directions taken since Hilbert 5. The 900 page reference book in 2013 “The Structure of Compact Groups” by Karl H. Hofmann and Sidney A. Morris, deals with one aspect of compact group theory. There are several books on profinite groups including those written by John S. Wilson (1998) and by Luis Ribes and ‎Pavel Zalesskii (2012). The 2007 book “The Lie Theory of Connected Pro-Lie Groups” by Karl Hofmann and Sidney A. Morris, demonstrates how powerful Lie Theory is in exposing the structure of infinite-dimensional Lie groups. The study of free topological groups initiated by A.A. Markov, M.I. Graev and S. Kakutani, has resulted in a wealth of interesting results, in particular those of A.V. Arkhangelʹskiĭ and many of his former students who developed this topic and its relations with topology. The book “Topological Groups and Related Structures” by Alexander Arkhangelʹskii and Mikhail Tkachenko has a diverse content including much material on free topological groups. Compactness conditions in topological groups, especially pseudocompactness as exemplified in the many papers of W.W. Comfort, has been another direction which has proved very fruitful to the present day

    A survey of random processes with reinforcement

    Full text link
    The models surveyed include generalized P\'{o}lya urns, reinforced random walks, interacting urn models, and continuous reinforced processes. Emphasis is on methods and results, with sketches provided of some proofs. Applications are discussed in statistics, biology, economics and a number of other areas.Comment: Published at http://dx.doi.org/10.1214/07-PS094 in the Probability Surveys (http://www.i-journals.org/ps/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Multicoloured Random Graphs: Constructions and Symmetry

    Full text link
    This is a research monograph on constructions of and group actions on countable homogeneous graphs, concentrating particularly on the simple random graph and its edge-coloured variants. We study various aspects of the graphs, but the emphasis is on understanding those groups that are supported by these graphs together with links with other structures such as lattices, topologies and filters, rings and algebras, metric spaces, sets and models, Moufang loops and monoids. The large amount of background material included serves as an introduction to the theories that are used to produce the new results. The large number of references should help in making this a resource for anyone interested in beginning research in this or allied fields.Comment: Index added in v2. This is the first of 3 documents; the other 2 will appear in physic

    Why must we work in the phase space?

    Full text link
    We are going to prove that the phase-space description is fundamental both in the classical and quantum physics. It is shown that many problems in statistical mechanics, quantum mechanics, quasi-classical theory and in the theory of integrable systems may be well-formulated only in the phase-space language.Comment: 130 page

    Applications of dynamical systems with symmetry

    Get PDF
    This thesis examines the application of symmetric dynamical systems theory to two areas in applied mathematics: weakly coupled oscillators with symmetry, and bifurcations in flame front equations. After a general introduction in the first chapter, chapter 2 develops a theoretical framework for the study of identical oscillators with arbitrary symmetry group under an assumption of weak coupling. It focusses on networks with 'all to all' Sn coupling. The structure imposed by the symmetry on the phase space for weakly coupled oscillators with Sn, Zn or Dn symmetries is discussed, and the interaction of internal symmetries and network symmetries is shown to cause decoupling under certain conditions. Chapter 3 discusses what this implies for generic dynamical behaviour of coupled oscillator systems, and concentrates on application to small numbers of oscillators (three or four). We find strong restrictions on bifurcations, and structurally stable heteroclinic cycles. Following this, chapter 4 reports on experimental results from electronic oscillator systems and relates it to results in chapter 3. In a forced oscillator system, breakdown of regular motion is observed to occur through break up of tori followed by a symmetric bifurcation of chaotic attractors to fully symmetric chaos. Chapter 5 discusses reduction of a system of identical coupled oscillators to phase equations in a weakly coupled limit, considering them as weakly dissipative Hamiltonian oscillators with very weakly coupling. This provides a derivation of example phase equations discussed in chapter 2. Applications are shown for two van der Pol-Duffing oscillators in the case of a twin-well potential. Finally, we turn our attention to the Kuramoto-Sivashinsky equation. Chapter 6 starts by discussing flame front equations in general, and non-linear models in particular. The Kuramoto-Sivashinsky equation on a rectangular domain with simple boundary conditions is found to be an example of a large class of systems whose linear behaviour gives rise to arbitrarily high order mode interactions. Chapter 7 presents computation of some of these mode interactions using competerised Liapunov-Schmidt reduction onto the kernel of the linearisation, and investigates the bifurcation diagrams in two parameters

    Topology and order structures, part 1

    Get PDF
    corecore