75,597 research outputs found

    Self-repairing Homomorphic Codes for Distributed Storage Systems

    Full text link
    Erasure codes provide a storage efficient alternative to replication based redundancy in (networked) storage systems. They however entail high communication overhead for maintenance, when some of the encoded fragments are lost and need to be replenished. Such overheads arise from the fundamental need to recreate (or keep separately) first a copy of the whole object before any individual encoded fragment can be generated and replenished. There has been recently intense interest to explore alternatives, most prominent ones being regenerating codes (RGC) and hierarchical codes (HC). We propose as an alternative a new family of codes to improve the maintenance process, which we call self-repairing codes (SRC), with the following salient features: (a) encoded fragments can be repaired directly from other subsets of encoded fragments without having to reconstruct first the original data, ensuring that (b) a fragment is repaired from a fixed number of encoded fragments, the number depending only on how many encoded blocks are missing and independent of which specific blocks are missing. These properties allow for not only low communication overhead to recreate a missing fragment, but also independent reconstruction of different missing fragments in parallel, possibly in different parts of the network. We analyze the static resilience of SRCs with respect to traditional erasure codes, and observe that SRCs incur marginally larger storage overhead in order to achieve the aforementioned properties. The salient SRC properties naturally translate to low communication overheads for reconstruction of lost fragments, and allow reconstruction with lower latency by facilitating repairs in parallel. These desirable properties make self-repairing codes a good and practical candidate for networked distributed storage systems

    Fine Grained Component Engineering of Adaptive Overlays: Experiences and Perspectives

    Get PDF
    Recent years have seen significant research being carried out into peer-to-peer (P2P) systems. This work has focused on the styles and applications of P2P computing, from grid computation to content distribution; however, little investigation has been performed into how these systems are built. Component based engineering is an approach that has seen successful deployment in the field of middleware development; functionality is encapsulated in ‘building blocks’ that can be dynamically plugged together to form complete systems. This allows efficient, flexible and adaptable systems to be built with lower overhead and development complexity. This paper presents an investigation into the potential of using component based engineering in the design and construction of peer-to-peer overlays. It is highlighted that the quality of these properties is dictated by the component architecture used to implement the system. Three reusable decomposition architectures are designed and evaluated using Chord and Pastry case studies. These demonstrate that significant improvements can be made over traditional design approaches resulting in much more reusable, (re)configurable and extensible systems

    On Constructing Persistent Identifiers with Persistent Resolution Targets

    Get PDF
    Persistent Identifiers (PID) are the foundation referencing digital assets in scientific publications, books, and digital repositories. In its realization, PIDs contain metadata and resolving targets in form of URLs that point to data sets located on the network. In contrast to PIDs, the target URLs are typically changing over time; thus, PIDs need continuous maintenance -- an effort that is increasing tremendously with the advancement of e-Science and the advent of the Internet-of-Things (IoT). Nowadays, billions of sensors and data sets are subject of PID assignment. This paper presents a new approach of embedding location independent targets into PIDs that allows the creation of maintenance-free PIDs using content-centric network technology and overlay networks. For proving the validity of the presented approach, the Handle PID System is used in conjunction with Magnet Link access information encoding, state-of-the-art decentralized data distribution with BitTorrent, and Named Data Networking (NDN) as location-independent data access technology for networks. Contrasting existing approaches, no green-field implementation of PID or major modifications of the Handle System is required to enable location-independent data dissemination with maintenance-free PIDs.Comment: Published IEEE paper of the FedCSIS 2016 (SoFAST-WS'16) conference, 11.-14. September 2016, Gdansk, Poland. Also available online: http://ieeexplore.ieee.org/document/7733372

    A Pragmatic Approach to DHT Adoption

    Full text link
    Despite the peer-to-peer community's obvious wish to have its systems adopted, specific mechanisms to facilitate incremental adoption have not yet received the same level of attention as the many other practical concerns associated with these systems. This paper argues that ease of adoption should be elevated to a first-class concern and accordingly presents HOLD, a front-end to existing DHTs that is optimized for incremental adoption. Specifically, HOLD is backwards-compatible: it leverages DNS to provide a key-based routing service to existing Internet hosts without requiring them to install any software. This paper also presents applications that could benefit from HOLD as well as the trade-offs that accompany HOLD. Early implementation experience suggests that HOLD is practical
    • …
    corecore