10,592 research outputs found

    Evaluation of Anonymized ONS Queries

    Full text link
    Electronic Product Code (EPC) is the basis of a pervasive infrastructure for the automatic identification of objects on supply chain applications (e.g., pharmaceutical or military applications). This infrastructure relies on the use of the (1) Radio Frequency Identification (RFID) technology to tag objects in motion and (2) distributed services providing information about objects via the Internet. A lookup service, called the Object Name Service (ONS) and based on the use of the Domain Name System (DNS), can be publicly accessed by EPC applications looking for information associated with tagged objects. Privacy issues may affect corporate infrastructures based on EPC technologies if their lookup service is not properly protected. A possible solution to mitigate these issues is the use of online anonymity. We present an evaluation experiment that compares the of use of Tor (The second generation Onion Router) on a global ONS/DNS setup, with respect to benefits, limitations, and latency.Comment: 14 page

    Simulation of undular bores evolution with damping

    Get PDF
    Propagation of undular bores with damping is considered in the framework of perturbed extended Korteweg-de Vries (peKdV) equation. Two types of damping terms for the peKdV equation, namely linear and Chezy frictional terms, which describe the turbulent boundary layers in the fluid flow are considered. Solving the peKdV equation numerically using the method of lines shows that under the influence of damping, the lead-ing solitary wave of the undular bores will split from the nonlinear wavetrain, propagates and behaves like an isolated solitary wave. The amplitude of the leading wave will remain the same for some times before it starts to decay again at a larger time. In general the amplitude of the leading wave and the mean level across the undular bore decreases due to the effect of damping

    Radio Frequency Identification Technology: Applications, Technical Challenges and Strategies

    Get PDF
    Purpose - The purpose of this paper is to discuss the technology behind RFID systems, identify the applications of RFID in various industries, and discuss the technical challenges of RFID implementation and the corresponding strategies to overcome those challenges. Design/methodology/approach - Comprehensive literature review and integration of the findings from literature. Findings - Technical challenges of RFID implementation include tag cost, standards, tag and reader selection, data management, systems integration and security. The corresponding solution is suggested for each challenge. Research limitations/implications - A survey type research is needed to validate the results. Practical implications - This research offers useful technical guidance for companies which plan to implement RFID and we expect it to provide the motivation for much future research in this area. Originality/value - As the infancy of RFID applications, few researches have existed to address the technical issues of RFID implementation. Our research filled this gap

    Perfect tag identification protocol in RFID networks

    Full text link
    Radio Frequency IDentification (RFID) systems are becoming more and more popular in the field of ubiquitous computing, in particular for objects identification. An RFID system is composed by one or more readers and a number of tags. One of the main issues in an RFID network is the fast and reliable identification of all tags in the reader range. The reader issues some queries, and tags properly answer. Then, the reader must identify the tags from such answers. This is crucial for most applications. Since the transmission medium is shared, the typical problem to be faced is a MAC-like one, i.e. to avoid or limit the number of tags transmission collisions. We propose a protocol which, under some assumptions about transmission techniques, always achieves a 100% perfomance. It is based on a proper recursive splitting of the concurrent tags sets, until all tags have been identified. The other approaches present in literature have performances of about 42% in the average at most. The counterpart is a more sophisticated hardware to be deployed in the manufacture of low cost tags.Comment: 12 pages, 1 figur

    Antenna Design for Semi-Passive UHF RFID Transponder with Energy Harvester

    Get PDF
    A novel microstrip antenna which is dedicated to UHF semi-passive RFID transponders with an energy harvester is presented in this paper. The antenna structure designed and simulated by using Mentor Graphics HyperLynx 3D EM software is described in details. The modeling and simulation results along with comparison with experimental data are analyzed and concluded. The main goal of the project is the need to eliminate a traditional battery form the transponder structure. The energy harvesting block, which is used instead, converts ambient energy (electromagnetic energy of typical radio communication system) into electrical power for internal circuitry. The additional function (gathering extra energy) of the transponder antenna causes the necessity to create new designs in this scope

    Technologie RFID a Blochkchain v dodavatelském řetězci

    Get PDF
    The paper discusses the possibility of combining RFID and Blockchain technology to more effectively prevent counterfeiting of products or raw materials, and to solve problems related to production, logistics and storage. Linking these technologies can lead to better planning by increasing the transparency and traceability of industrial or logistical processes or such as efficient detection of critical chain sites.Příspěvek se zabývá možností kombinace technologií RFID a Blockchain pro účinnější zabránění padělání výrobků či surovin a řešení problémů spojených s výrobou, logistikou a skladováním. Spojení těchto technologií může vést k lepšímu plánování díky vyšší transparentnosti a sledovatelnosti průmyslových nebo logistických procesů, nebo například k efektivnímu zjišťování kritických míst řetězce
    corecore