310 research outputs found

    Fractional Order Fault Tolerant Control - A Survey

    Get PDF
    In this paper, a comprehensive review of recent advances and trends regarding Fractional Order Fault Tolerant Control (FOFTC) design is presented. This novel robust control approach has been emerging in the last decade and is still gathering great research efforts mainly because of its promising results and outcomes. The purpose of this study is to provide a useful overview for researchers interested in developing this interesting solution for plants that are subject to faults and disturbances with an obligation for a maintained performance level. Throughout the paper, the various works related to FOFTC in literature are categorized first by considering their research objective between fault detection with diagnosis and fault tolerance with accommodation, and second by considering the nature of the studied plants depending on whether they are modelized by integer order or fractional order models. One of the main drawbacks of these approaches lies in the increase in complexity associated with introducing the fractional operators, their approximation and especially during the stability analysis. A discussion on the main disadvantages and challenges that face this novel fractional order robust control research field is given in conjunction with motivations for its future development. This study provides a simulation example for the application of a FOFTC against actuator faults in a Boeing 747 civil transport aircraft is provided to illustrate the efficiency of such robust control strategies

    Finite-Time Tracking Control for a Class of MIMO Nonlinear Systems with Unknown Asymmetric Saturations

    Get PDF
    This paper addresses the problem of finite-time tracking control for multiple-input and multiple-output (MIMO) nonlinear systems with asymmetric saturations. A systematic approach is proposed to eliminate the effects of unmeasured external disturbances and unknown asymmetric saturations. In the proposed control strategy, a terminal sliding mode disturbance observer is provided to estimate the augmented disturbance (which contains the unknown asymmetric input saturation and external disturbance). The approximation error of the augmented disturbance can converge to zero in a fixed finite-time interval. Furthermore, a novel finite-time tracking control algorithm is developed to guarantee fast convergence of the tracking error. Compared with the existing results on finite-time tracking control, the chattering problem and the input saturation problem can be solved in a unified framework. Several simulations are given to demonstrate the effectiveness of the proposed approach

    Adaptive Backstepping Control for Fractional-Order Nonlinear Systems with External Disturbance and Uncertain Parameters Using Smooth Control

    Full text link
    In this paper, we consider controlling a class of single-input-single-output (SISO) commensurate fractional-order nonlinear systems with parametric uncertainty and external disturbance. Based on backstepping approach, an adaptive controller is proposed with adaptive laws that are used to estimate the unknown system parameters and the bound of unknown disturbance. Instead of using discontinuous functions such as the sign\mathrm{sign} function, an auxiliary function is employed to obtain a smooth control input that is still able to achieve perfect tracking in the presence of bounded disturbances. Indeed, global boundedness of all closed-loop signals and asymptotic perfect tracking of fractional-order system output to a given reference trajectory are proved by using fractional directed Lyapunov method. To verify the effectiveness of the proposed control method, simulation examples are presented.Comment: Accepted by the IEEE Transactions on Systems, Man and Cybernetics: Systems with Minor Revision

    Intelligent control of nonlinear systems with actuator saturation using neural networks

    Get PDF
    Common actuator nonlinearities such as saturation, deadzone, backlash, and hysteresis are unavoidable in practical industrial control systems, such as computer numerical control (CNC) machines, xy-positioning tables, robot manipulators, overhead crane mechanisms, and more. When the actuator nonlinearities exist in control systems, they may exhibit relatively large steady-state tracking error or even oscillations, cause the closed-loop system instability, and degrade the overall system performance. Proportional-derivative (PD) controller has observed limit cycles if the actuator nonlinearity is not compensated well. The problems are particularly exacerbated when the required accuracy is high, as in micropositioning devices. Due to the non-analytic nature of the actuator nonlinear dynamics and the fact that the exact actuator nonlinear functions, namely operation uncertainty, are unknown, the saturation compensation research is a challenging and important topic with both theoretical and practical significance. Adaptive control can accommodate the system modeling, parametric, and environmental structural uncertainties. With the universal approximating property and learning capability of neural network (NN), it is appealing to develop adaptive NN-based saturation compensation scheme without explicit knowledge of actuator saturation nonlinearity. In this dissertation, intelligent anti-windup saturation compensation schemes in several scenarios of nonlinear systems are investigated. The nonlinear systems studied within this dissertation include the general nonlinear system in Brunovsky canonical form, a second order multi-input multi-output (MIMO) nonlinear system such as a robot manipulator, and an underactuated system-flexible robot system. The abovementioned methods assume the full states information is measurable and completely known. During the NN-based control law development, the imposed actuator saturation is assumed to be unknown and treated as the system input disturbance. The schemes that lead to stability, command following and disturbance rejection is rigorously proved, and verified using the nonlinear system models. On-line NN weights tuning law, the overall closed-loop performance, and the boundedness of the NN weights are rigorously derived and guaranteed based on Lyapunov approach. The NN saturation compensator is inserted into a feedforward path. The simulation conducted indicates that the proposed schemes can effectively compensate for the saturation nonlinearity in the presence of system uncertainty

    Diseño de un controlador de seguimiento para un sistema SISO de servoposicionamiento neumático

    Get PDF
    Pneumatic systems have many advantages, such as simplicity, reliability, low-cost, long life, etc. making them attractive for rapid development and widespread application, but the complexity of the airflow through the valve port and the friction between the cylinder and piston make it difficult to establish an exact mathematical model and control the pneumatic system with high precision. Experiments were conducted with a 25 mm bore rod-less pneumatic cylinder and a 5/3 way proportional control valve. In this contribution, I propose a nonlinear robust tracking control strategy to solve the tracking problem of the servo pneumatic positioning system. The approach is novel in the sense that it takes into account the nonlinearities inherent to pneumatic servo positioning systems and considers position, velocity and pressure difference in the chambers of the pneumatic cylinder as feedback states. The suggested control strategy is implemented in simulation and on the real system. Experimental results from an implementation on a test ring show a high position tracking control performance.Los sistemas neumáticos tienen varias ventajas que permitieron su rápido desarrollo y uso generalizado, tales como: simplicidad, confiabilidad, bajo costo, larga vida etc. Sin embargo, la complejidad del flujo de aire a través de los orificios de la válvula y la naturaleza de la fuerza de fricción entre las paredes del cilindro y el pistón, dificultan la obtención de modelos matemáticos exactos y el control de los sistemas neumáticos con alta precisión. Experimentos fueron llevados a cabo con un cilindro sin vástago de 25 mm de diámetro y una válvula de control proporcional de 5 puertos -3 vías. En este artículo, proponemos una estrategia de control de posicionamiento robusta para solucionar el problema de un sistema de servo posicionamiento neumático. El enfoque es novedoso en el sentido de que tiene en cuenta las no linealidades inherentes a los sistemas de servo posicionamiento neumático y considera posición, velocidad y diferencia de presiones en las cámaras del cilindro neumático como estados de retroalimentación.  La estrategia de control propuesta es implementada en simulación y sobre el sistema real. Los resultados experimentales de la implementación de la estrategia en el sistema de servo-posicionamiento  neumático muestran un alto desempeño en el control de seguimiento de posición

    Nonlinear Tracking Control Using a Robust Differential-Algebraic Approach.

    Get PDF
    This dissertation presents the development and application of an inherently robust nonlinear trajectory tracking control design methodology which is based on linearization along a nominal trajectory. The problem of trajectory tracking is reduced to two separate control problems. The first is to compute the nominal control signal that is needed to place a nonlinear system on a desired trajectory. The second problem is one of stabilizing the nominal trajectory. The primary development of this work is the development of practical methods for designing error regulators for Linear Time Varying systems, which allows for the application of trajectory linearization to time varying trajectories for nonlinear systems. This development is based on a new Differential Algebraic Spectral Theory. The problem of robust tracking for nonlinear systems with parametric uncertainty is studied in relation to the Linear Time Varying spectrum. The control method presented herein constitutes a rather general control strategy for nonlinear dynamic systems. Design and simulation case studies for some challenging nonlinear tracking problems are considered. These control problems include: two academic problems, a pitch autopilot design for a skid-to-turn missile, a two link robot controller, a four degree of freedom roll-yaw autopilot, and a complete six degree of freedom Bank-to-turn planar missile autopilot. The simulation results for these designs show significant improvements in performance and robustness compared to other current control strategies

    Model Reduction of Hybrid Systems

    Get PDF

    Relative Threshold-Based Event-Triggered Control for Nonlinear Constrained Systems With Application to Aircraft Wing Rock Motion

    Get PDF
    This paper concentrates upon the event-driven controller design problem for a class of nonlinear single input single output (SISO) parametric systems with full state constraints. A varying threshold for the triggering mechanism is exploited, which makes the communication more flexible. Moreover, from the viewpoint of energy conservation and consumption reduction, the system capability becomes better owing to the contribution of the proposed event triggered mechanism. In the meantime, the developed control strategy can avoid the Zeno behavior since the lower bound of the sample time is provided. The considered plant is in a lower-triangular form, in which the match condition is not satisfied. To ensure that all the states to retain in a predefined region, a barrier Lyapunov function (BLF) based adaptive control law is developed. Due to the existence of the parametric uncertainties, an adaptive algorithm is presented as an estimated tool. All the signals appearing in the closed-loop systems are then proven to be uniformly ultimately bounded (UUB). Meanwhile, the output of the system can track a given signal as far as possible. In the end, the effectiveness of the proposed approach is validated by an aircraft wing rock motion system

    On the Control of Microgrids Against Cyber-Attacks: A Review of Methods and Applications

    Get PDF
    Nowadays, the use of renewable generations, energy storage systems (ESSs) and microgrids (MGs) has been developed due to better controllability of distributed energy resources (DERs) as well as their cost-effective and emission-aware operation. The development of MGs as well as the use of hierarchical control has led to data transmission in the communication platform. As a result, the expansion of communication infrastructure has made MGs as cyber-physical systems (CPSs) vulnerable to cyber-attacks (CAs). Accordingly, prevention, detection and isolation of CAs during proper control of MGs is essential. In this paper, a comprehensive review on the control strategies of microgrids against CAs and its defense mechanisms has been done. The general structure of the paper is as follows: firstly, MGs operational conditions, i.e., the secure or insecure mode of the physical and cyber layers are investigated and the appropriate control to return to a safer mode are presented. Then, the common MGs communication system is described which is generally used for multi-agent systems (MASs). Also, classification of CAs in MGs has been reviewed. Afterwards, a comprehensive survey of available researches in the field of prevention, detection and isolation of CA and MG control against CA are summarized. Finally, future trends in this context are clarified
    corecore