68,429 research outputs found

    Identifying modular flows on multilayer networks reveals highly overlapping organization in social systems

    Full text link
    Unveiling the community structure of networks is a powerful methodology to comprehend interconnected systems across the social and natural sciences. To identify different types of functional modules in interaction data aggregated in a single network layer, researchers have developed many powerful methods. For example, flow-based methods have proven useful for identifying modular dynamics in weighted and directed networks that capture constraints on flow in the systems they represent. However, many networked systems consist of agents or components that exhibit multiple layers of interactions. Inevitably, representing this intricate network of networks as a single aggregated network leads to information loss and may obscure the actual organization. Here we propose a method based on compression of network flows that can identify modular flows in non-aggregated multilayer networks. Our numerical experiments on synthetic networks show that the method can accurately identify modules that cannot be identified in aggregated networks or by analyzing the layers separately. We capitalize on our findings and reveal the community structure of two multilayer collaboration networks: scientists affiliated to the Pierre Auger Observatory and scientists publishing works on networks on the arXiv. Compared to conventional aggregated methods, the multilayer method reveals smaller modules with more overlap that better capture the actual organization

    Controlling the dynamic percolation of carbon nanotube based conductive polymer composites by addition of secondary nanofillers: The effect on electrical conductivity and tuneable sensing behaviour

    Get PDF
    In this paper, the electrical properties of ternary nanocomposites based on thermoplastic polyurethane (TPU) and multi-walled carbon nanotubes (MWCNTs) are studied. In particular two nanofillers - differing in shape and electrical properties - are used in conjunction with MWCNTs: an electrically conductive CB and an insulating needle-like nanoclay, sepiolite. The ternary nanocomposites were manufactured in a number of forms (extruded pellets, filaments and compression moulded films) and their morphological and electrical properties characterised as function of time and temperature. The presence of both secondary nanofillers is found to affect the formation of a percolating network of MWCNTs in TPU, inducing a reduced percolation threshold and tuneable strain sensing ability. These ternary nanocomposites can find application as conductive and multi-functional materials for flexible electronics, sensing films and fibres in smart textiles. (c) 2012 Elsevier Ltd. All rights reserved

    Semantic multimedia remote display for mobile thin clients

    Get PDF
    Current remote display technologies for mobile thin clients convert practically all types of graphical content into sequences of images rendered by the client. Consequently, important information concerning the content semantics is lost. The present paper goes beyond this bottleneck by developing a semantic multimedia remote display. The principle consists of representing the graphical content as a real-time interactive multimedia scene graph. The underlying architecture features novel components for scene-graph creation and management, as well as for user interactivity handling. The experimental setup considers the Linux X windows system and BiFS/LASeR multimedia scene technologies on the server and client sides, respectively. The implemented solution was benchmarked against currently deployed solutions (VNC and Microsoft-RDP), by considering text editing and WWW browsing applications. The quantitative assessments demonstrate: (1) visual quality expressed by seven objective metrics, e.g., PSNR values between 30 and 42 dB or SSIM values larger than 0.9999; (2) downlink bandwidth gain factors ranging from 2 to 60; (3) real-time user event management expressed by network round-trip time reduction by factors of 4-6 and by uplink bandwidth gain factors from 3 to 10; (4) feasible CPU activity, larger than in the RDP case but reduced by a factor of 1.5 with respect to the VNC-HEXTILE
    • …
    corecore