31,616 research outputs found

    DiME: Maximizing Mutual Information by a Difference of Matrix-Based Entropies

    Full text link
    We introduce an information-theoretic quantity with similar properties to mutual information that can be estimated from data without making explicit assumptions on the underlying distribution. This quantity is based on a recently proposed matrix-based entropy that uses the eigenvalues of a normalized Gram matrix to compute an estimate of the eigenvalues of an uncentered covariance operator in a reproducing kernel Hilbert space. We show that a difference of matrix-based entropies (DiME) is well suited for problems involving the maximization of mutual information between random variables. While many methods for such tasks can lead to trivial solutions, DiME naturally penalizes such outcomes. We compare DiME to several baseline estimators of mutual information on a toy Gaussian dataset. We provide examples of use cases for DiME, such as latent factor disentanglement and a multiview representation learning problem where DiME is used to learn a shared representation among views with high mutual information

    Unsupervised Visual Representation Learning via Mutual Information Regularized Assignment

    Full text link
    This paper proposes Mutual Information Regularized Assignment (MIRA), a pseudo-labeling algorithm for unsupervised representation learning inspired by information maximization. We formulate online pseudo-labeling as an optimization problem to find pseudo-labels that maximize the mutual information between the label and data while being close to a given model probability. We derive a fixed-point iteration method and prove its convergence to the optimal solution. In contrast to baselines, MIRA combined with pseudo-label prediction enables a simple yet effective clustering-based representation learning without incorporating extra training techniques or artificial constraints such as sampling strategy, equipartition constraints, etc. With relatively small training epochs, representation learned by MIRA achieves state-of-the-art performance on various downstream tasks, including the linear/k-NN evaluation and transfer learning. Especially, with only 400 epochs, our method applied to ImageNet dataset with ResNet-50 architecture achieves 75.6% linear evaluation accuracy.Comment: NeurIPS 202

    Enhanced Multimodal Representation Learning with Cross-modal KD

    Full text link
    This paper explores the tasks of leveraging auxiliary modalities which are only available at training to enhance multimodal representation learning through cross-modal Knowledge Distillation (KD). The widely adopted mutual information maximization-based objective leads to a short-cut solution of the weak teacher, i.e., achieving the maximum mutual information by simply making the teacher model as weak as the student model. To prevent such a weak solution, we introduce an additional objective term, i.e., the mutual information between the teacher and the auxiliary modality model. Besides, to narrow down the information gap between the student and teacher, we further propose to minimize the conditional entropy of the teacher given the student. Novel training schemes based on contrastive learning and adversarial learning are designed to optimize the mutual information and the conditional entropy, respectively. Experimental results on three popular multimodal benchmark datasets have shown that the proposed method outperforms a range of state-of-the-art approaches for video recognition, video retrieval and emotion classification.Comment: Accepted by CVPR202
    • …
    corecore