16 research outputs found

    Maximising microprocessor reliability through game theory and heuristics

    Get PDF
    PhD ThesisEmbedded Systems are becoming ever more pervasive in our society, with most routine daily tasks now involving their use in some form and the market predicted to be worth USD 220 billion, a rise of 300%, by 2018. Consumers expect more functionality with each design iteration, but for no detriment in perceived performance. These devices can range from simple low-cost chips to expensive and complex systems and are a major cost driver in the equipment design phase. For more than 35 years, designers have kept pace with Moore's Law, but as device size approaches the atomic limit, layouts are becoming so complicated that current scheduling techniques are also reaching their limit, meaning that more resource must be reserved to manage and deliver reliable operation. With the advent of many-core systems and further sources of unpredictability such as changeable power supplies and energy harvesting, this reservation of capability may become so large that systems will not be operating at their peak efficiency. These complex systems can be controlled through many techniques, with jobs scheduled either online prior to execution beginning or online at each time or event change. Increased processing power and job types means that current online scheduling methods that employ exhaustive search techniques will not be suitable to define schedules for such enigmatic task lists and that new techniques using statistic-based methods must be investigated to preserve Quality of Service. A new paradigm of scheduling through complex heuristics is one way to administer these next levels of processor effectively and allow the use of more simple devices in complex systems; thus reducing unit cost while retaining reliability a key goal identified by the International Technology Roadmap for Semi-conductors for Embedded Systems in Critical Environments. These changes would be beneficial in terms of cost reduction and system exibility within the next generation of device. This thesis investigates the use of heuristics and statistical methods in the operation of real-time systems, with the feasibility of Game Theory and Statistical Process Control for the successful supervision of high-load and critical jobs investigated. Heuristics are identified as an effective method of controlling complex real-time issues, with two-person non-cooperative games delivering Nash-optimal solutions where these exist. The simplified algorithms for creating and solving Game Theory events allow for its use within small embedded RISC devices and an increase in reliability for systems operating at the apex of their limits. Within this Thesis, Heuristic and Game Theoretic algorithms for a variety of real-time scenarios are postulated, investigated, refined and tested against existing schedule types; initially through MATLAB simulation before testing on an ARM Cortex M3 architecture functioning as a simplified automotive Electronic Control Unit.Doctoral Teaching Account from the EPSRC

    Scheduling and locking in multiprocessor real-time operating systems

    Get PDF
    With the widespread adoption of multicore architectures, multiprocessors are now a standard deployment platform for (soft) real-time applications. This dissertation addresses two questions fundamental to the design of multicore-ready real-time operating systems: (1) Which scheduling policies offer the greatest flexibility in satisfying temporal constraints; and (2) which locking algorithms should be used to avoid unpredictable delays? With regard to Question 1, LITMUSRT, a real-time extension of the Linux kernel, is presented and its design is discussed in detail. Notably, LITMUSRT implements link-based scheduling, a novel approach to controlling blocking due to non-preemptive sections. Each implemented scheduler (22 configurations in total) is evaluated under consideration of overheads on a 24-core Intel Xeon platform. The experiments show that partitioned earliest-deadline first (EDF) scheduling is generally preferable in a hard real-time setting, whereas global and clustered EDF scheduling are effective in a soft real-time setting. With regard to Question 2, real-time locking protocols are required to ensure that the maximum delay due to priority inversion can be bounded a priori. Several spinlock- and semaphore-based multiprocessor real-time locking protocols for mutual exclusion (mutex), reader-writer (RW) exclusion, and k-exclusion are proposed and analyzed. A new category of RW locks suited to worst-case analysis, termed phase-fair locks, is proposed and three efficient phase-fair spinlock implementations are provided (one with few atomic operations, one with low space requirements, and one with constant RMR complexity). Maximum priority-inversion blocking is proposed as a natural complexity measure for semaphore protocols. It is shown that there are two classes of schedulability analysis, namely suspension-oblivious and suspension-aware analysis, that yield two different lower bounds on blocking. Five asymptotically optimal locking protocols are designed and analyzed: a family of mutex, RW, and k-exclusion protocols for global, partitioned, and clustered scheduling that are asymptotically optimal in the suspension-oblivious case, and a mutex protocol for partitioned scheduling that is asymptotically optimal in the suspension-aware case. A LITMUSRT-based empirical evaluation is presented that shows these protocols to be practical

    On multiprocessor utility accrual real-time scheduling with statistical timing assurances

    No full text
    We present the first Utility Accrual (or UA) real-time scheduling algorithm for multiprocessors, called gMUA. The algorithm considers an application model where real-time activities are subject to time/utility function time constraints, variable execution time demands, and resource overloads where the total activity utilization demand exceeds the total capacity of all processors. We con-sider the scheduling objective of (1) probabilistically satisfying lower bounds on each activity’s maximum utility and (2) maximizing the system-wide, total accrued utility. We establish several properties of gMUA including optimal total utility (for a special case), conditions under which individual activity utility lower bounds are satisfied, a lower bound on system-wide total accrued utility, and bounded sensitivity for assurances to variations in execution time demand estimates. Our simulation experiments validate our analytical results and confirm the algorithm’s effective-ness and superiority

    Safety and Reliability - Safe Societies in a Changing World

    Get PDF
    The contributions cover a wide range of methodologies and application areas for safety and reliability that contribute to safe societies in a changing world. These methodologies and applications include: - foundations of risk and reliability assessment and management - mathematical methods in reliability and safety - risk assessment - risk management - system reliability - uncertainty analysis - digitalization and big data - prognostics and system health management - occupational safety - accident and incident modeling - maintenance modeling and applications - simulation for safety and reliability analysis - dynamic risk and barrier management - organizational factors and safety culture - human factors and human reliability - resilience engineering - structural reliability - natural hazards - security - economic analysis in risk managemen

    Naval Postgraduate School Catalog 2015

    Get PDF
    Approved for public release; distribution is unlimited

    University of Nebraska at Omaha 2017-2018 Course Catalog

    Get PDF
    The University of Nebraska Omaha (UNO) is a premier metropolitan university that combines the resources of a doctoral research institution with a thriving community in the heart of Omaha. With a global reach and vision, UNO is large enough to provide opportunities students seek, yet personal enough to include the mentorship they need to achieve academic excellence, creativity, and engaged learningat competitive tuition rates. UNO is committed to and engaged with the city surrounding it, allowing students unique hands-on opportunities, internships, service learning,applied research, and other collaborative activities that enhance time in the classroom. This is the ”O” we want you to know – forward thinking, student centered,and devoted to the city we call home. #KnowThe

    Reports to the President

    Get PDF
    A compilation of annual reports for the 1990-1991 academic year, including a report from the President of the Massachusetts Institute of Technology, as well as reports from the academic and administrative units of the Institute. The reports outline the year's goals, accomplishments, honors and awards, and future plans

    Queensland University of Technology: Handbook 1995

    Get PDF
    The Queensland University of Technology handbook gives an outline of the faculties and subject offerings available that were offered by QUT

    Queensland University of Technology: Handbook 1995

    Get PDF
    The Queensland University of Technology handbook gives an outline of the faculties and subject offerings available that were offered by QUT
    corecore