17,635 research outputs found

    Optimum SHE for cascaded H-bridge multilevel inverters using: NR-GA-PSO, comparative study

    Get PDF
    Selective Harmonic Elimination (SHE) is very widely applied technique in the control of multilevel inverters that can be used to eliminate the low order dominant harmonics. This is considered a low frequency technique, in which the switching angles are predetermined based on solving a system of transcendental equations. Iterative techniques such as NR and Heuristic techniques such as GA and PSO have been used widely in literatures for the problem of SHE. This paper presents a detailed comparative study of these three techniques when applied for a 7-level CHB-MLI

    Composing Scalable Nonlinear Algebraic Solvers

    Get PDF
    Most efficient linear solvers use composable algorithmic components, with the most common model being the combination of a Krylov accelerator and one or more preconditioners. A similar set of concepts may be used for nonlinear algebraic systems, where nonlinear composition of different nonlinear solvers may significantly improve the time to solution. We describe the basic concepts of nonlinear composition and preconditioning and present a number of solvers applicable to nonlinear partial differential equations. We have developed a software framework in order to easily explore the possible combinations of solvers. We show that the performance gains from using composed solvers can be substantial compared with gains from standard Newton-Krylov methods.Comment: 29 pages, 14 figures, 13 table

    A multilevel approach for nonnegative matrix factorization

    Get PDF
    Nonnegative Matrix Factorization (NMF) is the problem of approximating a nonnegative matrix with the product of two low-rank nonnegative matrices and has been shown to be particularly useful in many applications, e.g., in text mining, image processing, computational biology, etc. In this paper, we explain how algorithms for NMF can be embedded into the framework of multi- level methods in order to accelerate their convergence. This technique can be applied in situations where data admit a good approximate representation in a lower dimensional space through linear transformations preserving nonnegativity. A simple multilevel strategy is described and is experi- mentally shown to speed up significantly three popular NMF algorithms (alternating nonnegative least squares, multiplicative updates and hierarchical alternating least squares) on several standard image datasets.nonnegative matrix factorization, algorithms, multigrid and multilevel methods, image processing

    Relaxation-Based Coarsening for Multilevel Hypergraph Partitioning

    Get PDF
    Multilevel partitioning methods that are inspired by principles of multiscaling are the most powerful practical hypergraph partitioning solvers. Hypergraph partitioning has many applications in disciplines ranging from scientific computing to data science. In this paper we introduce the concept of algebraic distance on hypergraphs and demonstrate its use as an algorithmic component in the coarsening stage of multilevel hypergraph partitioning solvers. The algebraic distance is a vertex distance measure that extends hyperedge weights for capturing the local connectivity of vertices which is critical for hypergraph coarsening schemes. The practical effectiveness of the proposed measure and corresponding coarsening scheme is demonstrated through extensive computational experiments on a diverse set of problems. Finally, we propose a benchmark of hypergraph partitioning problems to compare the quality of other solvers

    Optimization of mesh hierarchies in Multilevel Monte Carlo samplers

    Full text link
    We perform a general optimization of the parameters in the Multilevel Monte Carlo (MLMC) discretization hierarchy based on uniform discretization methods with general approximation orders and computational costs. We optimize hierarchies with geometric and non-geometric sequences of mesh sizes and show that geometric hierarchies, when optimized, are nearly optimal and have the same asymptotic computational complexity as non-geometric optimal hierarchies. We discuss how enforcing constraints on parameters of MLMC hierarchies affects the optimality of these hierarchies. These constraints include an upper and a lower bound on the mesh size or enforcing that the number of samples and the number of discretization elements are integers. We also discuss the optimal tolerance splitting between the bias and the statistical error contributions and its asymptotic behavior. To provide numerical grounds for our theoretical results, we apply these optimized hierarchies together with the Continuation MLMC Algorithm. The first example considers a three-dimensional elliptic partial differential equation with random inputs. Its space discretization is based on continuous piecewise trilinear finite elements and the corresponding linear system is solved by either a direct or an iterative solver. The second example considers a one-dimensional It\^o stochastic differential equation discretized by a Milstein scheme
    corecore