391 research outputs found

    Preference Learning

    Get PDF
    This report documents the program and the outcomes of Dagstuhl Seminar 14101 “Preference Learning”. Preferences have recently received considerable attention in disciplines such as machine learning, knowledge discovery, information retrieval, statistics, social choice theory, multiple criteria decision making, decision under risk and uncertainty, operations research, and others. The motivation for this seminar was to showcase recent progress in these different areas with the goal of working towards a common basis of understanding, which should help to facilitate future synergies

    Multi-Target Prediction: A Unifying View on Problems and Methods

    Full text link
    Multi-target prediction (MTP) is concerned with the simultaneous prediction of multiple target variables of diverse type. Due to its enormous application potential, it has developed into an active and rapidly expanding research field that combines several subfields of machine learning, including multivariate regression, multi-label classification, multi-task learning, dyadic prediction, zero-shot learning, network inference, and matrix completion. In this paper, we present a unifying view on MTP problems and methods. First, we formally discuss commonalities and differences between existing MTP problems. To this end, we introduce a general framework that covers the above subfields as special cases. As a second contribution, we provide a structured overview of MTP methods. This is accomplished by identifying a number of key properties, which distinguish such methods and determine their suitability for different types of problems. Finally, we also discuss a few challenges for future research

    Learning from eXtreme Bandit Feedback

    Full text link
    We study the problem of batch learning from bandit feedback in the setting of extremely large action spaces. Learning from extreme bandit feedback is ubiquitous in recommendation systems, in which billions of decisions are made over sets consisting of millions of choices in a single day, yielding massive observational data. In these large-scale real-world applications, supervised learning frameworks such as eXtreme Multi-label Classification (XMC) are widely used despite the fact that they incur significant biases due to the mismatch between bandit feedback and supervised labels. Such biases can be mitigated by importance sampling techniques, but these techniques suffer from impractical variance when dealing with a large number of actions. In this paper, we introduce a selective importance sampling estimator (sIS) that operates in a significantly more favorable bias-variance regime. The sIS estimator is obtained by performing importance sampling on the conditional expectation of the reward with respect to a small subset of actions for each instance (a form of Rao-Blackwellization). We employ this estimator in a novel algorithmic procedure -- named Policy Optimization for eXtreme Models (POXM) -- for learning from bandit feedback on XMC tasks. In POXM, the selected actions for the sIS estimator are the top-p actions of the logging policy, where p is adjusted from the data and is significantly smaller than the size of the action space. We use a supervised-to-bandit conversion on three XMC datasets to benchmark our POXM method against three competing methods: BanditNet, a previously applied partial matching pruning strategy, and a supervised learning baseline. Whereas BanditNet sometimes improves marginally over the logging policy, our experiments show that POXM systematically and significantly improves over all baselines

    Incorporating label dependencies in multilabel stance detection

    Get PDF
    © 2019 Association for Computational Linguistics Stance detection in social media is a well-studied task in a variety of domains. Nevertheless, previous work has mostly focused on multiclass versions of the problem, where the labels are mutually exclusive, and typically positive, negative or neutral. In this paper, we address versions of the task in which an utterance can have multiple labels, thus corresponding to multilabel classification. We propose a method that explicitly incorporates label dependencies in the training objective and compare it against a variety of baselines, as well as a reduction of multilabel to multiclass learning. In experiments with three datasets, we find that our proposed method improves upon all baselines on two out of three datasets. We also show that the reduction of multilabel to multiclass classification can be very competitive, especially in cases where the output consists of a small number of labels and one can enumerate over all label combinations

    Counterfactual Risk Minimization: Learning from Logged Bandit Feedback

    Full text link
    We develop a learning principle and an efficient algorithm for batch learning from logged bandit feedback. This learning setting is ubiquitous in online systems (e.g., ad placement, web search, recommendation), where an algorithm makes a prediction (e.g., ad ranking) for a given input (e.g., query) and observes bandit feedback (e.g., user clicks on presented ads). We first address the counterfactual nature of the learning problem through propensity scoring. Next, we prove generalization error bounds that account for the variance of the propensity-weighted empirical risk estimator. These constructive bounds give rise to the Counterfactual Risk Minimization (CRM) principle. We show how CRM can be used to derive a new learning method -- called Policy Optimizer for Exponential Models (POEM) -- for learning stochastic linear rules for structured output prediction. We present a decomposition of the POEM objective that enables efficient stochastic gradient optimization. POEM is evaluated on several multi-label classification problems showing substantially improved robustness and generalization performance compared to the state-of-the-art.Comment: 10 page

    Extreme Multilabel Classification for Specialist Doctor Recommendation with Implicit Feedback and Limited Patient Metadata

    Full text link
    Recommendation Systems (RS) are often used to address the issue of medical doctor referrals. However, these systems require access to patient feedback and medical records, which may not always be available in real-world scenarios. Our research focuses on medical referrals and aims to predict recommendations in different specialties of physicians for both new patients and those with a consultation history. We use Extreme Multilabel Classification (XML), commonly employed in text-based classification tasks, to encode available features and explore different scenarios. While its potential for recommendation tasks has often been suggested, this has not been thoroughly explored in the literature. Motivated by the doctor referral case, we show how to recast a traditional recommender setting into a multilabel classification problem that current XML methods can solve. Further, we propose a unified model leveraging patient history across different specialties. Compared to state-of-the-art RS using the same features, our approach consistently improves standard recommendation metrics up to approximately 10%10\% for patients with a previous consultation history. For new patients, XML proves better at exploiting available features, outperforming the benchmark in favorable scenarios, with particular emphasis on recall metrics. Thus, our approach brings us one step closer to creating more effective and personalized doctor referral systems. Additionally, it highlights XML as a promising alternative to current hybrid or content-based RS, while identifying key aspects to take into account when using XML for recommendation tasks
    corecore