93,741 research outputs found

    Accurate object reconstruction by statistical moments

    No full text
    Statistical moments can offer a powerful means for object description in object sequences. Moments used in this way provide a description of the changing shape of the object with time. Using these descriptions to predict temporal views of the object requires efficient and accurate reconstruction of the object from a limited set of moments, but accurate reconstruction from moments has as yet received only limited attention. We show how we can improve accuracy not only by consideration of formulation, but also by a new adaptive thresholding technique that removes one parameter needed in reconstruction. Both approaches are equally applicable for Legendre and other orthogonal moments to improve accuracy in reconstruction

    Zernike velocity moments for sequence-based description of moving features

    No full text
    The increasing interest in processing sequences of images motivates development of techniques for sequence-based object analysis and description. Accordingly, new velocity moments have been developed to allow a statistical description of both shape and associated motion through an image sequence. Through a generic framework motion information is determined using the established centralised moments, enabling statistical moments to be applied to motion based time series analysis. The translation invariant Cartesian velocity moments suffer from highly correlated descriptions due to their non-orthogonality. The new Zernike velocity moments overcome this by using orthogonal spatial descriptions through the proven orthogonal Zernike basis. Further, they are translation and scale invariant. To illustrate their benefits and application the Zernike velocity moments have been applied to gait recognition—an emergent biometric. Good recognition results have been achieved on multiple datasets using relatively few spatial and/or motion features and basic feature selection and classification techniques. The prime aim of this new technique is to allow the generation of statistical features which encode shape and motion information, with generic application capability. Applied performance analyses illustrate the properties of the Zernike velocity moments which exploit temporal correlation to improve a shape's description. It is demonstrated how the temporal correlation improves the performance of the descriptor under more generalised application scenarios, including reduced resolution imagery and occlusion

    A fast and robust hand-driven 3D mouse

    Get PDF
    The development of new interaction paradigms requires a natural interaction. This means that people should be able to interact with technology with the same models used to interact with everyday real life, that is through gestures, expressions, voice. Following this idea, in this paper we propose a non intrusive vision based tracking system able to capture hand motion and simple hand gestures. The proposed device allows to use the hand as a "natural" 3D mouse, where the forefinger tip or the palm centre are used to identify a 3D marker and the hand gesture can be used to simulate the mouse buttons. The approach is based on a monoscopic tracking algorithm which is computationally fast and robust against noise and cluttered backgrounds. Two image streams are processed in parallel exploiting multi-core architectures, and their results are combined to obtain a constrained stereoscopic problem. The system has been implemented and thoroughly tested in an experimental environment where the 3D hand mouse has been used to interact with objects in a virtual reality application. We also provide results about the performances of the tracker, which demonstrate precision and robustness of the proposed syste

    Statistical Model of Shape Moments with Active Contour Evolution for Shape Detection and Segmentation

    Get PDF
    This paper describes a novel method for shape representation and robust image segmentation. The proposed method combines two well known methodologies, namely, statistical shape models and active contours implemented in level set framework. The shape detection is achieved by maximizing a posterior function that consists of a prior shape probability model and image likelihood function conditioned on shapes. The statistical shape model is built as a result of a learning process based on nonparametric probability estimation in a PCA reduced feature space formed by the Legendre moments of training silhouette images. A greedy strategy is applied to optimize the proposed cost function by iteratively evolving an implicit active contour in the image space and subsequent constrained optimization of the evolved shape in the reduced shape feature space. Experimental results presented in the paper demonstrate that the proposed method, contrary to many other active contour segmentation methods, is highly resilient to severe random and structural noise that could be present in the data

    Weak Lensing Analysis of the z~0.8 cluster CL 0152-1357 with the Advanced Camera for Surveys

    Full text link
    We present a weak lensing analysis of the X-ray luminous cluster CL 0152-1357 at z~0.84 using HST/ACS observations. The unparalleled resolution and sensitivity of ACS enable us to measure weakly distorted, faint background galaxies to the extent that the number density reaches ~175 arcmin^-2. The PSF of ACS has a complicated shape that also varies across the field. We construct a PSF model for ACS from an extensive investigation of 47 Tuc stars in a modestly crowded region. We show that this model PSF excellently describes the PSF variation pattern in the cluster observation when a slight adjustment of ellipticity is applied. The high number density of source galaxies and the accurate removal of the PSF effect through moment-based deconvolution allow us to restore the dark matter distribution of the cluster in great detail. The direct comparison of the mass map with the X-ray morphology from Chandra observations shows that the two peaks of intracluster medium traced by X-ray emission are lagging behind the corresponding dark matter clumps, indicative of an on-going merger. The overall mass profile of the cluster can be well described by an NFW profile with a scale radius of r_s =309+-45 kpc and a concentration parameter of c=3.7+-0.5. The mass estimates from the lensing analysis are consistent with those from X-ray and Sunyaev-Zeldovich analyses. The predicted velocity dispersion is also in good agreement with the spectroscopic measurement from VLT observations. In the adopted WMAP cosmology, the total projected mass and the mass-to-light ratio within 1 Mpc are estimated to be 4.92+-0.44 10^14 solar mass and 95+-8 solar mass/solar luminosity, respectively.Comment: Accepted for publication in Astrophysical Journal. 58 pages, 26 figures. Figures have been degraded to meet size limit; a higher resolution version available at http://acs.pha.jhu.edu/~mkjee/ms_cl0152.pd

    Focus set based reconstruction of micro-objects

    Get PDF
    • 

    corecore