25,206 research outputs found

    Evolutionary Modular Robotics: Survey and Analysis

    Get PDF
    This paper surveys various applications of artificial evolution in the field of modular robots. Evolutionary robotics aims to design autonomous adaptive robots automatically that can evolve to accomplish a specific task while adapting to environmental changes. A number of studies have demonstrated the feasibility of evolutionary algorithms for generating robotic control and morphology. However, a huge challenge faced was how to manufacture these robots. Therefore, modular robots were employed to simplify robotic evolution and their implementation in real hardware. Consequently, more research work has emerged on using evolutionary computation to design modular robots rather than using traditional hand design approaches in order to avoid cognition bias. These techniques have the potential of developing adaptive robots that can achieve tasks not fully understood by human designers. Furthermore, evolutionary algorithms were studied to generate global modular robotic behaviors including; self-assembly, self-reconfiguration, self-repair, and self-reproduction. These characteristics allow modular robots to explore unstructured and hazardous environments. In order to accomplish the aforementioned evolutionary modular robotic promises, this paper reviews current research on evolutionary robotics and modular robots. The motivation behind this work is to identify the most promising methods that can lead to developing autonomous adaptive robotic systems that require the minimum task related knowledge on the designer side.https://doi.org/10.1007/s10846-018-0902-

    Modular Mechatronics Infrastructure for Robotic Planetary Exploration Assets in a Field Operation Scenario

    Get PDF
    In 2021 the Modular Mechatronics Infrastructure (MMI) was introduced as a solution to reduce weight, costs, and development time in robotic lanetary missions. With standardized interfaces and multi-functional elements, this modular approach is planned to be used more often in sustainable exploration activities on the Moon and Mars. The German multi-robot research project “Autonomous Robotic Networks to Help Modern Societies (ARCHES)” has explored this concept with the use of various collaborative robotic assets which have their capabilities extended by the MMI. Different scientific payloads, engineering infrastructure modules, and specific purpose tools can be integrated to and manipulated by a robotic arm and a standardized electromechanical docking-interface. Throughout the MMI’s design and implementation phase the performed preliminary tests confirmed that the different systems of the robotic cooperative team such as the Docking Interface System (DIS), the Power Management System (PMS), and the Data Communication System (DCS) functioned successfully. During the summer of 2022 a Demonstration Mission on Mount Etna (Sicily, Italy) was carried out as part of the ARCHES Project. This field scenario allowed the validation of the robotics systems in an analogue harsh environment and the confirmation of enhanced operations with the application of this modular method. Among the numerous activities performed in this volcanic terrain there are the efficient assembling of the Low Frequency Array (LOFAR) network, the energy-saving and reduced complexity of a detached Laser Induced Breakdown Spectroscopy (LIBS) module, and the uninterrupted powered operation between modules when switching between different power sources. The field data collected during this analogue campaign provided important outcomes for the modular robotics application. Modular and autonomous robots certainly benefit from their versatility, reusability, less complex systems, reduced requirements for space qualification, and lower risks for the mission. These characteristics will ensure that long duration and complex robotic planetary endeavours are not as challenging as they used to be in the past

    Modular Self-Reconfigurable Robot Systems

    Get PDF
    The field of modular self-reconfigurable robotic systems addresses the design, fabrication, motion planning, and control of autonomous kinematic machines with variable morphology. Modular self-reconfigurable systems have the promise of making significant technological advances to the field of robotics in general. Their promise of high versatility, high value, and high robustness may lead to a radical change in automation. Currently, a number of researchers have been addressing many of the challenges. While some progress has been made, it is clear that many challenges still exist. By illustrating several of the outstanding issues as grand challenges that have been collaboratively written by a large number of researchers in this field, this article has shown several of the key directions for the future of this growing fiel

    Human-centred design methods : developing scenarios for robot assisted play informed by user panels and field trials

    Get PDF
    Original article can be found at: http://www.sciencedirect.com/ Copyright ElsevierThis article describes the user-centred development of play scenarios for robot assisted play, as part of the multidisciplinary IROMEC1 project that develops a novel robotic toy for children with special needs. The project investigates how robotic toys can become social mediators, encouraging children with special needs to discover a range of play styles, from solitary to collaborative play (with peers, carers/teachers, parents, etc.). This article explains the developmental process of constructing relevant play scenarios for children with different special needs. Results are presented from consultation with panel of experts (therapists, teachers, parents) who advised on the play needs for the various target user groups and who helped investigate how robotic toys could be used as a play tool to assist in the children’s development. Examples from experimental investigations are provided which have informed the development of scenarios throughout the design process. We conclude by pointing out the potential benefit of this work to a variety of research projects and applications involving human–robot interactions.Peer reviewe

    Design and construction of a configurable full-field range imaging system for mobile robotic applications

    Get PDF
    Mobile robotic devices rely critically on extrospection sensors to determine the range to objects in the robot’s operating environment. This provides the robot with the ability both to navigate safely around obstacles and to map its environment and hence facilitate path planning and navigation. There is a requirement for a full-field range imaging system that can determine the range to any obstacle in a camera lens’ field of view accurately and in real-time. This paper details the development of a portable full-field ranging system whose bench-top version has demonstrated sub-millimetre precision. However, this precision required non-real-time acquisition rates and expensive hardware. By iterative replacement of components, a portable, modular and inexpensive version of this full-field ranger has been constructed, capable of real-time operation with some (user-defined) trade-off with precision

    The CLAWAR project

    Get PDF
    In Europe, there are two main thematic groups focusing on robotics, the Climbing and Walking Robots (CLAWAR) project (http://www.clawar.net) and the European Robotics Network (EURON) project (http://www.euron.org). The two networks are complementary: CLAWAR is industrially focused on the immediate needs, and EURON is focused more on blue skies research. This article presents the activities of the CLAWAR project
    • 

    corecore