4,905 research outputs found

    Routing And Communication Path Mapping In VANETS

    Get PDF
    Vehicular ad-hoc network (VANET) has quickly become an important aspect of the intelligent transport system (ITS), which is a combination of information technology, and transport works to improve efficiency and safety through data gathering and dissemination. However, transmitting data over an ad-hoc network comes with several issues such as broadcast storms, hidden terminal problems and unreliability; these greatly reduce the efficiency of the network and hence the purpose for which it was developed. We therefore propose a system of utilising information gathered externally from the node or through the various layers of the network into the access layer of the ETSI communication stack for routing to improve the overall efficiency of data delivery, reduce hidden terminals and increase reliability. We divide route into segments and design a set of metric system to select a controlling node as well as procedure for data transfer. Furthermore we propose a system for faster data delivery based on priority of data and density of nodes from route information while developing a map to show the communication situation of an area. These metrics and algorithms will be simulated in further research using the NS-3 environment to demonstrate the effectiveness

    The Structured Process Modeling Method (SPMM) : what is the best way for me to construct a process model?

    Get PDF
    More and more organizations turn to the construction of process models to support strategical and operational tasks. At the same time, reports indicate quality issues for a considerable part of these models, caused by modeling errors. Therefore, the research described in this paper investigates the development of a practical method to determine and train an optimal process modeling strategy that aims to decrease the number of cognitive errors made during modeling. Such cognitive errors originate in inadequate cognitive processing caused by the inherent complexity of constructing process models. The method helps modelers to derive their personal cognitive profile and the related optimal cognitive strategy that minimizes these cognitive failures. The contribution of the research consists of the conceptual method and an automated modeling strategy selection and training instrument. These two artefacts are positively evaluated by a laboratory experiment covering multiple modeling sessions and involving a total of 149 master students at Ghent University

    Identifying causal gateways and mediators in complex spatio-temporal systems

    Get PDF
    J.R. received support by the German National Academic Foundation (Studienstiftung), a Humboldt University Postdoctoral Fellowship, and the German Federal Ministry of Science and Education (Young Investigators Group CoSy-CC2, grant no. 01LN1306A). J.F.D. thanks the Stordalen Foundation and BMBF (project GLUES) for financial support. D.H. has been funded by grant ERC-CZ CORES LL-1201 of the Czech Ministry of Education. M.P. and N.J. received funding from the Czech Science Foundation project No. P303-14-02634S and from the Czech Ministry of Education, Youth and Sports, project No. DAAD-15-30. J.H. was supported by the Czech Science Foundation project GA13-23940S and Czech Health Research Council project NV15-29835A. We thank Mary Lindsey from the National Oceanic and Atmospheric Administration for her kind help with Fig. 4e. NCEP Reanalysis data provided by NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their web site at http://www.esrl.noaa.gov/psd/.Peer reviewedPublisher PD

    A Process Modelling Framework Based on Point Interval Temporal Logic with an Application to Modelling Patient Flows

    Get PDF
    This thesis considers an application of a temporal theory to describe and model the patient journey in the hospital accident and emergency (A&E) department. The aim is to introduce a generic but dynamic method applied to any setting, including healthcare. Constructing a consistent process model can be instrumental in streamlining healthcare issues. Current process modelling techniques used in healthcare such as flowcharts, unified modelling language activity diagram (UML AD), and business process modelling notation (BPMN) are intuitive and imprecise. They cannot fully capture the complexities of the types of activities and the full extent of temporal constraints to an extent where one could reason about the flows. Formal approaches such as Petri have also been reviewed to investigate their applicability to the healthcare domain to model processes. Additionally, to schedule patient flows, current modelling standards do not offer any formal mechanism, so healthcare relies on critical path method (CPM) and program evaluation review technique (PERT), that also have limitations, i.e. finish-start barrier. It is imperative to specify the temporal constraints between the start and/or end of a process, e.g., the beginning of a process A precedes the start (or end) of a process B. However, these approaches failed to provide us with a mechanism for handling these temporal situations. If provided, a formal representation can assist in effective knowledge representation and quality enhancement concerning a process. Also, it would help in uncovering complexities of a system and assist in modelling it in a consistent way which is not possible with the existing modelling techniques. The above issues are addressed in this thesis by proposing a framework that would provide a knowledge base to model patient flows for accurate representation based on point interval temporal logic (PITL) that treats point and interval as primitives. These objects would constitute the knowledge base for the formal description of a system. With the aid of the inference mechanism of the temporal theory presented here, exhaustive temporal constraints derived from the proposed axiomatic system’ components serves as a knowledge base. The proposed methodological framework would adopt a model-theoretic approach in which a theory is developed and considered as a model while the corresponding instance is considered as its application. Using this approach would assist in identifying core components of the system and their precise operation representing a real-life domain deemed suitable to the process modelling issues specified in this thesis. Thus, I have evaluated the modelling standards for their most-used terminologies and constructs to identify their key components. It will also assist in the generalisation of the critical terms (of process modelling standards) based on their ontology. A set of generalised terms proposed would serve as an enumeration of the theory and subsume the core modelling elements of the process modelling standards. The catalogue presents a knowledge base for the business and healthcare domains, and its components are formally defined (semantics). Furthermore, a resolution theorem-proof is used to show the structural features of the theory (model) to establish it is sound and complete. After establishing that the theory is sound and complete, the next step is to provide the instantiation of the theory. This is achieved by mapping the core components of the theory to their corresponding instances. Additionally, a formal graphical tool termed as point graph (PG) is used to visualise the cases of the proposed axiomatic system. PG facilitates in modelling, and scheduling patient flows and enables analysing existing models for possible inaccuracies and inconsistencies supported by a reasoning mechanism based on PITL. Following that, a transformation is developed to map the core modelling components of the standards into the extended PG (PG*) based on the semantics presented by the axiomatic system. A real-life case (from the King’s College hospital accident and emergency (A&E) department’s trauma patient pathway) is considered to validate the framework. It is divided into three patient flows to depict the journey of a patient with significant trauma, arriving at A&E, undergoing a procedure and subsequently discharged. Their staff relied upon the UML-AD and BPMN to model the patient flows. An evaluation of their representation is presented to show the shortfalls of the modelling standards to model patient flows. The last step is to model these patient flows using the developed approach, which is supported by enhanced reasoning and scheduling

    Northern Hemisphere Glaciation during the Globally Warm Early Late Pliocene

    Get PDF
    The early Late Pliocene (3.6 to ~3.0 million years ago) is the last extended interval in Earth's history when atmospheric CO2 concentrations were comparable to today's and global climate was warmer. Yet a severe global glaciation during marine isotope stage (MIS) M2 interrupted this phase of global warmth ~3.30 million years ago, and is seen as a premature attempt of the climate system to establish an ice-age world. Here we propose a conceptual model for the glaciation and deglaciation of MIS M2 based on geochemical and palynological records from five marine sediment cores along a Caribbean to eastern North Atlantic transect. Our records show that increased Pacific-to-Atlantic flow via the Central American Seaway weakened the North Atlantic Current and attendant northward heat transport prior to MIS M2. The consequent cooling of the northern high latitude oceans permitted expansion of the continental ice sheets during MIS M2, despite near-modern atmospheric CO2 concentrations. Sea level drop during this glaciation halted the inflow of Pacific water to the Atlantic via the Central American Seaway, allowing the build-up of a Caribbean Warm Pool. Once this warm pool was large enough, the Gulf Stream–North Atlantic Current system was reinvigorated, leading to significant northward heat transport that terminated the glaciation. Before and after MIS M2, heat transport via the North Atlantic Current was crucial in maintaining warm climates comparable to those predicted for the end of this century

    The origin and evolution of syntax errors in simple sequence flow models in BPMN

    Get PDF
    How do syntax errors emerge? What is the earliest moment that potential syntax errors can be detected? Which evolution do syntax errors go through during modeling? A provisional answer to these questions is formulated in this paper based on an investigation of a dataset containing the operational details of 126 modeling sessions. First, a list is composed of the different potential syntax errors. Second, a classification framework is built to categorize the errors according to their certainty and severity during modeling (i.e., in partial or complete models). Third, the origin and evolution of all syntax errors in the dataset are identified. This data is then used to collect a number of observations, which form a basis for future research

    Process Description Languages in Construction Logistics

    Get PDF
    During the construction processes, many problems might arise, at present the symptomatic treatment is the common practice. Besides, the literature offers a wide choice of business process description languages. This paper presents the modern principles and the description languages are used in the construction’s logistics processes. The most commonly used process description methods in the construction industry are the simple flow charts and Gantt diagrams. In our days, the Last Planner System (LPS) has a wide application range in the construction processes. The mostly used standardized process description language in the construction processes is the IDEF0 (Integrated DEFinition for function modelling, version 0). The hybrid model is also promising, which combines the scheduling, the BPMN (Business Process Model Notation) charts and IDEF0 method. Finally, by a comparison, a proposal has been developed, which gives a good basis to describe the logistics processes of construction
    corecore