1,173 research outputs found

    On Modeling Virality of Twitter Content

    Get PDF
    National Research Foundation (NRF) SingaporeWe would like to acknowledge that this research was carried out at the Living Analytics Research Centre (LARC), sponsored by Singapore National Research Foundation and Interactive & Digital Media Programme Office, Media Development Authority.</p

    Network Weirdness: Exploring the Origins of Network Paradoxes

    Full text link
    Social networks have many counter-intuitive properties, including the "friendship paradox" that states, on average, your friends have more friends than you do. Recently, a variety of other paradoxes were demonstrated in online social networks. This paper explores the origins of these network paradoxes. Specifically, we ask whether they arise from mathematical properties of the networks or whether they have a behavioral origin. We show that sampling from heavy-tailed distributions always gives rise to a paradox in the mean, but not the median. We propose a strong form of network paradoxes, based on utilizing the median, and validate it empirically using data from two online social networks. Specifically, we show that for any user the majority of user's friends and followers have more friends, followers, etc. than the user, and that this cannot be explained by statistical properties of sampling. Next, we explore the behavioral origins of the paradoxes by using the shuffle test to remove correlations between node degrees and attributes. We find that paradoxes for the mean persist in the shuffled network, but not for the median. We demonstrate that strong paradoxes arise due to the assortativity of user attributes, including degree, and correlation between degree and attribute.Comment: Accepted to ICWSM 201

    Scalable Privacy-Compliant Virality Prediction on Twitter

    Get PDF
    The digital town hall of Twitter becomes a preferred medium of communication for individuals and organizations across the globe. Some of them reach audiences of millions, while others struggle to get noticed. Given the impact of social media, the question remains more relevant than ever: how to model the dynamics of attention in Twitter. Researchers around the world turn to machine learning to predict the most influential tweets and authors, navigating the volume, velocity, and variety of social big data, with many compromises. In this paper, we revisit content popularity prediction on Twitter. We argue that strict alignment of data acquisition, storage and analysis algorithms is necessary to avoid the common trade-offs between scalability, accuracy and privacy compliance. We propose a new framework for the rapid acquisition of large-scale datasets, high accuracy supervisory signal and multilanguage sentiment prediction while respecting every privacy request applicable. We then apply a novel gradient boosting framework to achieve state-of-the-art results in virality ranking, already before including tweet's visual or propagation features. Our Gradient Boosted Regression Tree is the first to offer explainable, strong ranking performance on benchmark datasets. Since the analysis focused on features available early, the model is immediately applicable to incoming tweets in 18 languages.Comment: AffCon@AAAI-19 Best Paper Award; Presented at AAAI-19 W1: Affective Content Analysi

    Will This Video Go Viral? Explaining and Predicting the Popularity of Youtube Videos

    Full text link
    What makes content go viral? Which videos become popular and why others don't? Such questions have elicited significant attention from both researchers and industry, particularly in the context of online media. A range of models have been recently proposed to explain and predict popularity; however, there is a short supply of practical tools, accessible for regular users, that leverage these theoretical results. HIPie -- an interactive visualization system -- is created to fill this gap, by enabling users to reason about the virality and the popularity of online videos. It retrieves the metadata and the past popularity series of Youtube videos, it employs Hawkes Intensity Process, a state-of-the-art online popularity model for explaining and predicting video popularity, and it presents videos comparatively in a series of interactive plots. This system will help both content consumers and content producers in a range of data-driven inquiries, such as to comparatively analyze videos and channels, to explain and predict future popularity, to identify viral videos, and to estimate response to online promotion.Comment: 4 page

    Cascades: A view from Audience

    Full text link
    Cascades on online networks have been a popular subject of study in the past decade, and there is a considerable literature on phenomena such as diffusion mechanisms, virality, cascade prediction, and peer network effects. However, a basic question has received comparatively little attention: how desirable are cascades on a social media platform from the point of view of users? While versions of this question have been considered from the perspective of the producers of cascades, any answer to this question must also take into account the effect of cascades on their audience. In this work, we seek to fill this gap by providing a consumer perspective of cascade. Users on online networks play the dual role of producers and consumers. First, we perform an empirical study of the interaction of Twitter users with retweet cascades. We measure how often users observe retweets in their home timeline, and observe a phenomenon that we term the "Impressions Paradox": the share of impressions for cascades of size k decays much slower than frequency of cascades of size k. Thus, the audience for cascades can be quite large even for rare large cascades. We also measure audience engagement with retweet cascades in comparison to non-retweeted content. Our results show that cascades often rival or exceed organic content in engagement received per impression. This result is perhaps surprising in that consumers didn't opt in to see tweets from these authors. Furthermore, although cascading content is widely popular, one would expect it to eventually reach parts of the audience that may not be interested in the content. Motivated by our findings, we posit a theoretical model that focuses on the effect of cascades on the audience. Our results on this model highlight the balance between retweeting as a high-quality content selection mechanism and the role of network users in filtering irrelevant content

    Can Cascades be Predicted?

    Full text link
    On many social networking web sites such as Facebook and Twitter, resharing or reposting functionality allows users to share others' content with their own friends or followers. As content is reshared from user to user, large cascades of reshares can form. While a growing body of research has focused on analyzing and characterizing such cascades, a recent, parallel line of work has argued that the future trajectory of a cascade may be inherently unpredictable. In this work, we develop a framework for addressing cascade prediction problems. On a large sample of photo reshare cascades on Facebook, we find strong performance in predicting whether a cascade will continue to grow in the future. We find that the relative growth of a cascade becomes more predictable as we observe more of its reshares, that temporal and structural features are key predictors of cascade size, and that initially, breadth, rather than depth in a cascade is a better indicator of larger cascades. This prediction performance is robust in the sense that multiple distinct classes of features all achieve similar performance. We also discover that temporal features are predictive of a cascade's eventual shape. Observing independent cascades of the same content, we find that while these cascades differ greatly in size, we are still able to predict which ends up the largest
    corecore