164,730 research outputs found

    Surrogate-Assisted Unified Optimization Framework for Investigating Marine Structural Design Under Information Uncertainty.

    Full text link
    Structural decisions made in the early stages of marine systems design can have a large impact on future acquisition, maintenance and life-cycle costs. However, owing to the unique nature of early stage marine system design, these critical structure decisions are often made on the basis of incomplete information or knowledge about the design. When coupled with design optimization analysis, the complex, uncertain early stage design environment makes it very difficult to deliver a quantified trade-off analysis for decision making. This work presents a novel decision support method that integrates design optimization, high-fidelity analysis, and modeling of information uncertainty for early stage design and analysis. To support this method this dissertation improves the design optimization methods for marine structures by proposing several novel surrogate modeling techniques and strategies. The proposed work treats the uncertainties that are sourced from limited information in a non-statistical interval uncertainty form. This interval uncertainty is treated as an objective function in an optimization framework in order to explore the impact of information uncertainty on structural design performance. In this examination, the potential structural weight penalty regarding information uncertainty can be quickly identified in early stage, avoiding costly redesign later in the design. This dissertation then continues to explore a balanced computational structure between fidelity and efficiency. A proposed novel variable fidelity approach can be applied to wisely allocate expensive high-fidelity computational simulations. In achieving the proposed capabilities for design optimization, several surrogate modeling methods are developed concerning worst-case estimation, clustered multiple meta-modeling, and mixed variable modeling techniques. These surrogate methods have been demonstrated to significantly improve the efficiency of optimizer in dealing with the challenges of early stage marine structure design.PhDNaval Architecture and Marine EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/133365/1/yanliuch_1.pd

    Ensemble evaluation of hydrological model hypotheses

    Get PDF
    It is demonstrated for the first time how model parameter, structural and data uncertainties can be accounted for explicitly and simultaneously within the Generalized Likelihood Uncertainty Estimation (GLUE) methodology. As an example application, 72 variants of a single soil moisture accounting store are tested as simplified hypotheses of runoff generation at six experimental grassland field-scale lysimeters through model rejection and a novel diagnostic scheme. The fields, designed as replicates, exhibit different hydrological behaviors which yield different model performances. For fields with low initial discharge levels at the beginning of events, the conceptual stores considered reach their limit of applicability. Conversely, one of the fields yielding more discharge than the others, but having larger data gaps, allows for greater flexibility in the choice of model structures. As a model learning exercise, the study points to a “leaking” of the fields not evident from previous field experiments. It is discussed how understanding observational uncertainties and incorporating these into model diagnostics can help appreciate the scale of model structural error

    Fatigue Risks in the Connections of Sign Support Structures

    Get PDF
    This research effort develops a reliability-based approach for prescribing inspection intervals for mast-arm sign support structures corresponding to user-specified levels of fatigue-induced fracture risk. The resulting level of risk for a particular structure is dependent upon its geographical location, the type of connection it contains, the orientation of its mast-arm relative to north and the number of years it has been in service. The results of this research effort indicate that implementation of state-of-the-art reliability-based assessment procedures can contribute very valuable procedures for assigning inspection protocols (i.e. inspection intervals) that are based upon probabilities of finding fatigue-induced cracking in these structures. The engineering community can use the results of this research effort to design inspection intervals based upon risk and thereby better align inspection needs with limited fiscal and human resources

    Model parameter estimation and uncertainty analysis: a report of the ISPOR-SMDM modeling good research practices task force working group - 6

    Get PDF
    A model’s purpose is to inform medical decisions and health care resource allocation. Modelers employ quantitative methods to structure the clinical, epidemiological, and economic evidence base and gain qualitative insight to assist decision makers in making better decisions. From a policy perspective, the value of a model-based analysis lies not simply in its ability to generate a precise point estimate for a specific outcome but also in the systematic examination and responsible reporting of uncertainty surrounding this outcome and the ultimate decision being addressed. Different concepts relating to uncertainty in decision modeling are explored. Stochastic (first-order) uncertainty is distinguished from both parameter (second-order) uncertainty and from heterogeneity, with structural uncertainty relating to the model itself forming another level of uncertainty to consider. The article argues that the estimation of point estimates and uncertainty in parameters is part of a single process and explores the link between parameter uncertainty through to decision uncertainty and the relationship to value-of-information analysis. The article also makes extensive recommendations around the reporting of uncertainty, both in terms of deterministic sensitivity analysis techniques and probabilistic methods. Expected value of perfect information is argued to be the most appropriate presentational technique, alongside cost-effectiveness acceptability curves, for representing decision uncertainty from probabilistic analysis

    Contextual Risk and Its Relevance in Economics

    Full text link
    Uncertainty in economics still poses some fundamental problems illustrated, e.g., by the Allais and Ellsberg paradoxes. To overcome these difficulties, economists have introduced an interesting distinction between 'risk' and 'ambiguity' depending on the existence of a (classical Kolmogorovian) probabilistic structure modeling these uncertainty situations. On the other hand, evidence of everyday life suggests that 'context' plays a fundamental role in human decisions under uncertainty. Moreover, it is well known from physics that any probabilistic structure modeling contextual interactions between entities structurally needs a non-Kolmogorovian quantum-like framework. In this paper we introduce the notion of 'contextual risk' with the aim of modeling a substantial part of the situations in which usually only 'ambiguity' is present. More precisely, we firstly introduce the essentials of an operational formalism called 'the hidden measurement approach' in which probability is introduced as a consequence of fluctuations in the interaction between entities and contexts. Within the hidden measurement approach we propose a 'sphere model' as a mathematical tool for situations in which contextual risk occurs. We show that a probabilistic model of this kind is necessarily non-Kolmogorovian, hence it requires either the formalism of quantum mechanics or a generalization of it. This insight is relevant, for it explains the presence of quantum or, better, quantum-like, structures in economics, as suggested by some authors, and can serve to solve the aforementioned paradoxes.Comment: 6 pages, 2 figure
    • 

    corecore