208 research outputs found

    The Impact of SAR-ADC Mismatch on Quantized Massive MU-MIMO Systems

    Full text link
    Low-resolution analog-to-digital converters (ADCs) in massive multi-user (MU) multiple-input multiple-output (MIMO) wireless systems can significantly reduce the power, cost, and interconnect data rates of infrastructure basestations. Thus, recent research on the theory and algorithm sides has extensively focused on such architectures, but with idealistic quantization models. However, real-world ADCs do not behave like ideal quantizers, and are affected by fabrication mismatches. We analyze the impact of capacitor-array mismatches in successive approximation register (SAR) ADCs, which are widely used in wireless systems. We use Bussgang's decomposition to model the effects of such mismatches, and we analyze their impact on the performance of a single ADC. We then simulate a massive MU-MIMO system to demonstrate that capacitor mismatches should not be ignored, even in basestations that use low-resolution SAR ADCs.Comment: To be presented at Asilomar Conference on Signals, Systems, and Computers 202

    Beyond Massive MIMO : Trade-offs and Opportunities with Large Multi-Antenna Systems

    Get PDF
    After the commercial emergence of 5G, the research community is already putting its focus on proposing innovative solutions to enable the upcoming 6G. One important lesson put forth by 5G research was that scaling up the conventional multiple-input-multiple-output (MIMO) technology by increasing the number of antennas could be extremely beneficial for effectively multiplexing data streams in the spatial domain. This idea was embodied in massive MIMO, which constitutes one of the major technical advancements included in 5G. Consequently, 6G research efforts have been largely directed towards studying ways to further scale up wireless systems, as can be seen in some of the proposed 6G enabling technologies like large intelligent surface (LIS), cell-free massive MIMO, or even reconfigurable intelligent surface (RIS). This thesis studies the possibilities offered by some of these technologies, as well as the trade-offs that may naturally arise when scaling up such wireless systems.An important part of this thesis deals with decentralized solutions for base station (BS) technologies including a large number of antennas. Already in the initial massive MIMO prototypes, the increased number of BS antennas led to scalability issues due to the high interconnection bandwidths required to send the received signals---as well as the channel state information (CSI)---to a central processing unit (CPU) in charge of the data processing. These issues can only be exacerbated if we consider novel system proposals like LIS, where the number of BS antennas may be increased by an order of magnitude with respect to massive MIMO, or cell-free massive MIMO, where the BS antennas may be located far from each other. We provide a number of decentralized schemes to process the received data while restricting the information that has to be shared with a CPU. We also provide a framework to study architectures with an arbitrary level of decentralization, showing that there exists a direct trade-off between the interconnection bandwidth to a CPU and the complexity of the decentralized processing required for fixed user rates.Another part of this thesis studies RIS-based solutions to enhance the multiplexing performance of wireless communication systems. RIS constitutes one of the most attractive 6G enabling technologies since it provides a cost- and energy-efficient solution to improve the wireless propagation links by generating favorable reflections. We extend the concept of RIS by considering reconfigurable surfaces (RSs) with different processing capabilities, and we show how these surfaces may be employed for achieving perfect spatial multiplexing at reduced processing complexity in general multi-antenna communication settings. We also show that these surfaces can exploit the available degrees of freedom---e.g., due to excess of BS antennas---to embed their own data into the enhanced channel

    On the feasibility and applications of in-band full-duplex radios for future wireless networks

    Get PDF
    Due to the continuous increase of the demands for the wireless network’s capacity, in-band full-duplex (IBFD) has recently become a key research topic due to its potential to double spectral efficiency, reduce latency, enhance emerging applications, etc., by transmitting and receiving simultaneously over the same channel. Meanwhile, many studies in the literature experimentally demonstrated the feasibility of IBFD radios, which leads to the belief that it is possible to introduce IBFD in the standard of the next-generation networks. Therefore, in this thesis, we timely study the feasibility of IBFD and investigate its advantages for emerging applications in future networks. In the first part, we investigate the interference suppression methods to maximize the IBFD gain by minimizing the effects of self-interference (SI) and co-channel interference (CCI). To this end, we first study a 3-step self-interference cancellation (SIC) scheme. We focus on the time domain-based analog canceller and nonlinear digital canceller, explaining their rationale, demonstrating their effectiveness, and finding the optimal design by minimizing the residual effects. To break the limitation of conventional electrical radio frequency (RF) cancellers, we study the photonic-assisted canceller (PAC) and propose a new design, namely a fiber array-based canceller. We propose a new low-complexity tuning algorithm for the PAC. The effectiveness of the proposed fiber array canceller is demonstrated via simulations. Furthermore, we construct a prototype of the fiber array canceller with two taps and carry out experiments in real-world environments. Results show that the 3-step cancellation scheme can bring the SI close to the receiver's noise floor. Then, we consider the multiple-input multiple-output (MIMO) scenarios, proposing to employ hybrid RF-digital beamforming to reduce the implementation cost and studying its effects on the SIC design. Additionally, we propose a user allocation algorithm to reduce the CCI from the physical layer. A heterogeneous industrial Internet of Things (IIoT) scenario is considered, while the proposed algorithm can be generalized by modifying the parameters to fit any other network. In the second part, we study the beamforming schemes for IBFD multi-cell multi-user (IBFD-MCMU) networks. The transceiver hardware impairments (HWIs) and channel uncertainty are considered for robustness. We first enhance zero-forcing (ZF) and maximum ratio transmission and combining (MRTC) beamforming to be compatible with IBFD-MCMU networks in the presence of multi-antenna users. Then, we study beamforming for SIC, which is challenging for MCMU networks due to the limited antennas but complex interference. We propose a minimum mean-squared error (MMSE)-based scheme to enhance the SIC performance while minimizing its effects on the sum rate. Furthermore, we investigate a robust joint power allocation and beamforming (JPABF) scheme, which approaches the performance of existing optimal designs with reduced complexity. Their performance is evaluated and compared through 3GPP-based simulations. In the third part, we investigate the advantages of applying IBFD radios for physical layer security (PLS). We focus on a channel frequency response (CFR)-based secret key generation (SKG) scheme in MIMO systems. We formulate the intrinsic imperfections of IBFD radios (e.g., SIC overheads and noise due to imperfect SIC) and derive their effects on the probing errors. Then we derive closed-form expressions for the secret key capacity (SKC) of the SKG scheme in the presence of a passive eavesdropper. We analyze the asymptotic behavior of the SKC in the high-SNR regime and reveal the fundamental limits for IBFD and half-duplex (HD) radios. Based on the asymptotic SKC, numerical results illustrate that effective analog self-interference cancellation (ASIC) is the basis for IBFD to gain benefits over HD. Additionally, we investigate essential processing for the CFR-based SKG scheme and verify its effectiveness via simulations and the National Institute of Standards and Technology (NIST) test. In the fourth part, we consider a typical application of IBFD radios: integrated sensing and communication (ISAC). To provide reliable services in high-mobility scenarios, we introduce orthogonal time frequency space (OTFS) modulation and develop a novel framework for OTFS-ISAC. We give the channel representation in different domains and reveal the limitations and disadvantages of existing ISAC frameworks for OTFS waveforms and propose a novel radar sensing method, including a conventional MUSIC algorithm for angle estimation and a delay-time domain-based range and velocity estimator. Additionally, we study the communication design based on the estimated radar sensing parameters. To enable reliable IBFD radios in high-mobility scenarios, a SIC scheme compatible with OTFS and rapidly-changing channels is proposed, which is lacking in the literature. Numerical results demonstrate that the proposed ISAC waveform and associated estimation algorithm can provide both reliable communications and accurate radar sensing with reduced latency, improved spectral efficiency, etc

    Learning Maximum Margin Channel Decoders

    Full text link
    The problem of learning a channel decoder is considered for two channel models. The first model is an additive noise channel whose noise distribution is unknown and nonparametric. The learner is provided with a fixed codebook and a dataset comprised of independent samples of the noise, and is required to select a precision matrix for a nearest neighbor decoder in terms of the Mahalanobis distance. The second model is a non-linear channel with additive white Gaussian noise and unknown channel transformation. The learner is provided with a fixed codebook and a dataset comprised of independent input-output samples of the channel, and is required to select a matrix for a nearest neighbor decoder with a linear kernel. For both models, the objective of maximizing the margin of the decoder is addressed. Accordingly, for each channel model, a regularized loss minimization problem with a codebook-related regularization term and hinge-like loss function is developed, which is inspired by the support vector machine paradigm for classification problems. Expected generalization error bounds for the error probability loss function are provided for both models, under optimal choice of the regularization parameter. For the additive noise channel, a theoretical guidance for choosing the training signal-to-noise ratio is proposed based on this bound. In addition, for the non-linear channel, a high probability uniform generalization error bound is provided for the hypothesis class. For each channel, a stochastic sub-gradient descent algorithm for solving the regularized loss minimization problem is proposed, and an optimization error bound is stated. The performance of the proposed algorithms is demonstrated through several examples

    Adaptive Control of Systems with Quantization and Time Delays

    Get PDF
    This thesis addresses problems relating to tracking control of nonlinear systems in the presence of quantization and time delays. Motivated by the importance in areas such as networked control systems (NCSs) and digital systems, where the use of a communication network in NCS introduces several constraints to the control system, such as the occurrence of quantization and time delays. Quantization and time delays are of both practical and theoretical importance, and the study of systems where these issues arises is thus of great importance. If the system also has parameters that vary or are uncertain, this will make the control problem more complicated. Adaptive control is one tool to handle such system uncertainty. In this thesis, adaptive backstepping control schemes are proposed to handle uncertainties in the system, and to reduce the effects of quantization. Different control problems are considered where quantization is introduced in the control loop, either at the input, the state or both the input and the state. The quantization introduces difficulties in the controller design and stability analysis due to the limited information and nonlinear characteristics, such as discontinuous phenomena. In the thesis, it is analytically shown how the choice of quantization level affects the tracking performance, and how the stability of the closed-loop system equilibrium can be achieved by choosing proper design parameters. In addition, a predictor feedback control scheme is proposed to compensate for a time delay in the system, where the inputs are quantized at the same time. Experiments on a 2-degrees of freedom (DOF) helicopter system demonstrate the different developed control schemes.publishedVersio
    • …
    corecore