151 research outputs found

    Scalable and Fault Tolerant Group Key Management

    Get PDF
    To address the group key management problem for modern networks this research proposes a lightweight group key management protocol with a gossip-based dissemination routine. Experiments show that by slightly increasing workload for the key update mechanism, this protocol is superior to currently available tree-based protocols with respect to reliability and fault tolerance, while remaining scalable to large groups. Java simulations show that the protocol efficiently distributes keys to large groups in the midst of up to 35 percent node failure rates. In addition, it eliminates the need for logical key hierarchy while preserving an overall reduction in rekey messages to rekey a group. The protocol provides a simple ā€œpullā€ mechanism to ensure perfect rekeys in spite of the primary rekey mechanismā€™s probabilistic guarantees, without burdening key distribution facilities. Parameters for overlay management and gossip are improved to minimize rekey message traffic while remaining tolerant to node failure

    Formal analysis techniques for gossiping protocols

    Get PDF
    We give a survey of formal verification techniques that can be used to corroborate existing experimental results for gossiping protocols in a rigorous manner. We present properties of interest for gossiping protocols and discuss how various formal evaluation techniques can be employed to predict them

    Overlay networks for smart grids

    Get PDF

    Optimistic total order in wide area networks

    Get PDF
    Total order multicast greatly simplifies the implementa- tion of fault-tolerant services using the replicated state ma- chine approach. The additional latency of total ordering can be masked by taking advantage of spontaneous order- ing observed in LANs: A tentative delivery allows the ap- plication to proceed in parallel with the ordering protocol. The effectiveness of the technique rests on the optimistic as- sumption that a large share of correctly ordered tentative deliveries offsets the cost of undoing the effect of mistakes. This paper proposes a simple technique which enables the usage of optimistic delivery also in WANs with much larger transmission delays where the optimistic assumption does not normally hold. Our proposal exploits local clocks and the stability of network delays to reduce the mistakes in the ordering of tentative deliveries. An experimental evalu- ation of a modified sequencer-based protocol is presented, illustrating the usefulness of the approach in fault-tolerant database management
    • ā€¦
    corecore