45 research outputs found

    Categorial Grammar

    Get PDF
    The paper is a review article comparing a number of approaches to natural language syntax and semantics that have been developed using categorial frameworks. It distinguishes two related but distinct varieties of categorial theory, one related to Natural Deduction systems and the axiomatic calculi of Lambek, and another which involves more specialized combinatory operations

    Towards a constraint parser for categorial type logics

    Get PDF
    This thesis shows how constraint programming can be applied to the processing of Categorial Type Logics(CTL). It presents a novel formalisation of the parsing task for categorial grammars as a tree configuration problem, and demonstrates how a recent proposal for emph{structural constraints} on CTL parse trees can be integrated into this framework. The resulting processing model has been implemented using the Mozart programming environment. It appears to be a promising starting point for further research on the application of constraint parsing to CTL and the investigation of the practical processing complexity of CTL grammar fragments.}

    Towards a constraint parser for categorial type logics

    Get PDF
    This thesis shows how constraint programming can be applied to the processing of Categorial Type Logics(CTL). It presents a novel formalisation of the parsing task for categorial grammars as a tree configuration problem, and demonstrates how a recent proposal for emph{structural constraints} on CTL parse trees can be integrated into this framework. The resulting processing model has been implemented using the Mozart programming environment. It appears to be a promising starting point for further research on the application of constraint parsing to CTL and the investigation of the practical processing complexity of CTL grammar fragments.}

    Learning categorial grammars

    Get PDF
    In 1967 E. M. Gold published a paper in which the language classes from the Chomsky-hierarchy were analyzed in terms of learnability, in the technical sense of identification in the limit. His results were mostly negative, and perhaps because of this his work had little impact on linguistics. In the early eighties there was renewed interest in the paradigm, mainly because of work by Angluin and Wright. Around the same time, Arikawa and his co-workers refined the paradigm by applying it to so-called Elementary Formal Systems. By making use of this approach Takeshi Shinohara was able to come up with an impressive result; any class of context-sensitive grammars with a bound on its number of rules is learnable. Some linguistically motivated work on learnability also appeared from this point on, most notably Wexler & Culicover 1980 and Kanazawa 1994. The latter investigates the learnability of various classes of categorial grammar, inspired by work by Buszkowski and Penn, and raises some interesting questions. We follow up on this work by exploring complexity issues relevant to learning these classes, answering an open question from Kanazawa 1994, and applying the same kind of approach to obtain (non)learnable classes of Combinatory Categorial Grammars, Tree Adjoining Grammars, Minimalist grammars, Generalized Quantifiers, and some variants of Lambek Grammars. We also discuss work on learning tree languages and its application to learning Dependency Grammars. Our main conclusions are: - formal learning theory is relevant to linguistics, - identification in the limit is feasible for non-trivial classes, - the `Shinohara approach' -i.e., placing a numerical bound on the complexity of a grammar- can lead to a learnable class, but this completely depends on the specific nature of the formalism and the notion of complexity. We give examples of natural classes of commonly used linguistic formalisms that resist this kind of approach, - learning is hard work. Our results indicate that learning even `simple' classes of languages requires a lot of computational effort, - dealing with structure (derivation-, dependency-) languages instead of string languages offers a useful and promising approach to learnabilty in a linguistic contex

    Processing dependencies

    Get PDF

    Grammar and processing of order and dependency: a categorial approach

    Get PDF

    Category-Theoretic Quantitative Compositional Distributional Models of Natural Language Semantics

    Full text link
    This thesis is about the problem of compositionality in distributional semantics. Distributional semantics presupposes that the meanings of words are a function of their occurrences in textual contexts. It models words as distributions over these contexts and represents them as vectors in high dimensional spaces. The problem of compositionality for such models concerns itself with how to produce representations for larger units of text by composing the representations of smaller units of text. This thesis focuses on a particular approach to this compositionality problem, namely using the categorical framework developed by Coecke, Sadrzadeh, and Clark, which combines syntactic analysis formalisms with distributional semantic representations of meaning to produce syntactically motivated composition operations. This thesis shows how this approach can be theoretically extended and practically implemented to produce concrete compositional distributional models of natural language semantics. It furthermore demonstrates that such models can perform on par with, or better than, other competing approaches in the field of natural language processing. There are three principal contributions to computational linguistics in this thesis. The first is to extend the DisCoCat framework on the syntactic front and semantic front, incorporating a number of syntactic analysis formalisms and providing learning procedures allowing for the generation of concrete compositional distributional models. The second contribution is to evaluate the models developed from the procedures presented here, showing that they outperform other compositional distributional models present in the literature. The third contribution is to show how using category theory to solve linguistic problems forms a sound basis for research, illustrated by examples of work on this topic, that also suggest directions for future research.Comment: DPhil Thesis, University of Oxford, Submitted and accepted in 201

    Meaning versus Grammar

    Get PDF
    This volume investigates the complicated relationship between grammar, computation, and meaning in natural languages. It details conditions under which meaning-driven processing of natural language is feasible, discusses an operational and accessible implementation of the grammatical cycle for Dutch, and offers analyses of a number of further conjectures about constituency and entailment in natural language

    Proceedings of the Fifth Meeting on Mathematics of Language : MOL5

    Get PDF
    corecore