43 research outputs found

    Embedding of a free cartesian-closed category into the category of sets

    Get PDF
    AbstractWe show that every free cartesian closed category can be faithfully mapped to the category of sets. For that we use a Church-Rosser property of the appropriate typed lambda calculus

    The Confluent Terminating Context-Free Substitutive Rewriting System for the lambda-Calculus with Surjective Pairing and Terminal Type

    Get PDF
    For the lambda-calculus with surjective pairing and terminal type, Curien and Di Cosmo, inspired by Knuth-Bendix completion, introduced a confluent rewriting system of the naive rewriting system. Their system is a confluent (CR) rewriting system stable under contexts. They left the strong normalization (SN) of their rewriting system open. By Girard\u27s reducibility method with restricting reducibility theorem, we prove SN of their rewriting, and SN of the extensions by polymorphism and (terminal types caused by parametric polymorphism). We extend their system by sum types and eta-like reductions, and prove the SN. We compare their system to type-directed expansions

    Building Decision Procedures in the Calculus of Inductive Constructions

    Get PDF
    It is commonly agreed that the success of future proof assistants will rely on their ability to incorporate computations within deduction in order to mimic the mathematician when replacing the proof of a proposition P by the proof of an equivalent proposition P' obtained from P thanks to possibly complex calculations. In this paper, we investigate a new version of the calculus of inductive constructions which incorporates arbitrary decision procedures into deduction via the conversion rule of the calculus. The novelty of the problem in the context of the calculus of inductive constructions lies in the fact that the computation mechanism varies along proof-checking: goals are sent to the decision procedure together with the set of user hypotheses available from the current context. Our main result shows that this extension of the calculus of constructions does not compromise its main properties: confluence, subject reduction, strong normalization and consistency are all preserved

    On an Intuitionistic Logic for Pragmatics

    Get PDF
    We reconsider the pragmatic interpretation of intuitionistic logic [21] regarded as a logic of assertions and their justications and its relations with classical logic. We recall an extension of this approach to a logic dealing with assertions and obligations, related by a notion of causal implication [14, 45]. We focus on the extension to co-intuitionistic logic, seen as a logic of hypotheses [8, 9, 13] and on polarized bi-intuitionistic logic as a logic of assertions and conjectures: looking at the S4 modal translation, we give a denition of a system AHL of bi-intuitionistic logic that correctly represents the duality between intuitionistic and co-intuitionistic logic, correcting a mistake in previous work [7, 10]. A computational interpretation of cointuitionism as a distributed calculus of coroutines is then used to give an operational interpretation of subtraction.Work on linear co-intuitionism is then recalled, a linear calculus of co-intuitionistic coroutines is dened and a probabilistic interpretation of linear co-intuitionism is given as in [9]. Also we remark that by extending the language of intuitionistic logic we can express the notion of expectation, an assertion that in all situations the truth of p is possible and that in a logic of expectations the law of double negation holds. Similarly, extending co-intuitionistic logic, we can express the notion of conjecture that p, dened as a hypothesis that in some situation the truth of p is epistemically necessary

    Functionality, Polymorphism, and Concurrency: A Mathematical Investigation of Programming Paradigms

    Get PDF
    The search for mathematical models of computational phenomena often leads to problems that are of independent mathematical interest. Selected problems of this kind are investigated in this thesis. First, we study models of the untyped lambda calculus. Although many familiar models are constructed by order-theoretic methods, it is also known that there are some models of the lambda calculus that cannot be non-trivially ordered. We show that the standard open and closed term algebras are unorderable. We characterize the absolutely unorderable T-algebras in any algebraic variety T. Here an algebra is called absolutely unorderable if it cannot be embedded in an orderable algebra. We then introduce a notion of finite models for the lambda calculus, contrasting the known fact that models of the lambda calculus, in the traditional sense, are always non-recursive. Our finite models are based on Plotkin’s syntactical models of reduction. We give a method for constructing such models, and some examples that show how finite models can yield useful information about terms. Next, we study models of typed lambda calculi. Models of the polymorphic lambda calculus can be divided into environment-style models, such as Bruce and Meyer’s non-strict set-theoretic models, and categorical models, such as Seely’s interpretation in PL-categories. Reynolds has shown that there are no set-theoretic strict models. Following a different approach, we investigate a notion of non-strict categorical models. These provide a uniform framework in which one can describe various classes of non-strict models, including set-theoretic models with or without empty types, and Kripke-style models. We show that completeness theorems correspond to categorical representation theorems, and we reprove a completeness result by Meyer et al. on set-theoretic models of the simply-typed lambda calculus with possibly empty types. Finally, we study properties of asynchronous communication in networks of communicating processes. We formalize several notions of asynchrony independently of any particular concurrent process paradigm. A process is asynchronous if its input and/or output is filtered through a communication medium, such as a buffer or a queue, possibly with feedback. We prove that the behavior of asynchronous processes can be equivalently characterized by first-order axioms

    Curry-Howard-Lambek Correspondence for Intuitionistic Belief

    Get PDF
    This paper introduces a natural deduction calculus for intuitionistic logic of belief IEL−\mathsf{IEL}^{-} which is easily turned into a modal λ\lambda-calculus giving a computational semantics for deductions in IEL−\mathsf{IEL}^{-}. By using that interpretation, it is also proved that IEL−\mathsf{IEL}^{-} has good proof-theoretic properties. The correspondence between deductions and typed terms is then extended to a categorical semantics for identity of proofs in IEL−\mathsf{IEL}^{-} showing the general structure of such a modality for belief in an intuitionistic framework.Comment: Submitted to Studia Logica on January 31st, 202

    Categorical Completeness Results for the Simply-typed Lambda-calculus

    Get PDF
    . We investigate, in a categorical setting, some completeness properties of beta-eta conversion between closed terms of the simplytyped lambda calculus. A cartesian-closed category is said to be complete if, for any two unconvertible terms, there is some interpretation of the calculus in the category that distinguishes them. It is said to have a complete interpretation if there is some interpretation that equates only interconvertible terms. We give simple necessary and sufficient conditions on the category for each of the two forms of completeness to hold. The classic completeness results of, e.g., Friedman and Plotkin are immediate consequences. As another application, we derive a syntactic theorem of Statman characterizing beta-eta conversion as a maximum consistent congruence relation satisfying a property known as typical ambiguity. 1 Introduction In 1970 Friedman proved that beta-eta conversion is complete for deriving all equalities between the (simply-typed) lambda-definable..
    corecore