44 research outputs found

    Input-state-output representations and constructions of finite-support 2D convolutional codes

    Get PDF
    Two-dimensional convolutional codes are considered, with codewords having compact support indexed in N^2 and taking values in F^n, where F is a finite field. Input-state-output representations of these codes are introduced and several aspects of such representations are discussed. Constructive procedures of such codes with a designed distance are also presented. © 2010 AIMS-SDU

    Input-state-output representations of concatenated 2D convolutional codes

    Get PDF
    In this paper we investigate a novel model of concatenation of a pair of two-dimensional (2D) convolutional codes. We consider finite-support 2D convolutional codes and choose the so-called Fornasini-Marchesini input-state-output (ISO) model to represent these codes. More concretely, we interconnect in series two ISO representations of two 2D convolutional codes and derive the ISO representation of the ob- tained 2D convolutional code. We provide necessary condition for this representation to be minimal. Moreover, structural properties of modal reachability and modal observability of the resulting 2D convolutional codes are investigated

    Series concatenation of 2D convolutional codes

    Get PDF
    In this paper we study two-dimensional (2D) con-volutional codes which are obtained from series concatenation of two 2D convolutional codes. In this preliminary work we confine ourselves to dealing with finite-support 2D convolutional codes and make use of the so-called Fornasini-Marchesini input-state-output (ISO) model representations. In particular, we show that the series concatenation of two 2D convolutional codes is again a 2D convolutional code and we explicitly compute an ISO representation of the code. Within these ISO representations we study when the structural properties of reachability and observability of the two given ISO representations carry over to the resulting 2D convolutional code

    Regelungstheorie

    Get PDF
    The workshop “Regelungstheorie” (control theory) covered a broad variety of topics that were either concerned with fundamental mathematical aspects of control or with its strong impact in various fields of engineering

    On the absolute state complexity of algebraic geometric codes

    Get PDF
    A trellis of a code is a labeled directed graph whose paths from the initial to the terminal state correspond to the codewords. The main interest in trellises is due to their applications in the decoding of convolutional and block codes. The absolute state complexity of a linear code C is defined in terms of the number of vertices in the minimal trellises of all codes in the permutation equivalence class of C. In this thesis, we investigate the absolute state complexity of algebraic geometric codes. We illustrate lower bounds which, together with the well-known Wolf upper bound, give a good idea about the possible values of the absolute state complexities of algebraic geometric codes. A key role in the analysis is played by the gonality sequence of the function field that is used in code construction

    2019 EC3 July 10-12, 2019 Chania, Crete, Greece

    Get PDF

    Permutation Patterns, Reduced Decompositions with Few Repetitions and the Bruhat Order

    Get PDF
    This thesis is concerned with problems involving permutations. The main focus is on connections between permutation patterns and reduced decompositions with few repetitions. Connections between permutation patterns and reduced decompositions were first studied various mathematicians including Stanley, Billey and Tenner. In particular, they studied pattern avoidance conditions on reduced decompositions with no repeated elements. This thesis classifies the pattern avoidance and containment conditions on reduced decompositions with one and two elements repeated. This classification is then used to obtain new enumeration results for pattern classes related to the reduced decompositions and introduces the technique of counting pattern classes via reduced decompositions. In particular, counts on pattern classes involving 1 or 2 copies of the patterns 321 and 3412 are obtained. Pattern conditions are then used to classify and enumerate downsets in the Bruhat order for the symmetric group and the rook monoid which is a generalization of the symmetric group. Finally, motivated by coding theory, the concepts of displacement, additive stretch and multiplicative stretch of permutations are introduced. These concepts are then analyzed with respect to maximality and distribution as a new prospect for improving interleaver design
    corecore