707 research outputs found

    Polylogarithmic Approximation for Generalized Minimum Manhattan Networks

    Full text link
    Given a set of nn terminals, which are points in dd-dimensional Euclidean space, the minimum Manhattan network problem (MMN) asks for a minimum-length rectilinear network that connects each pair of terminals by a Manhattan path, that is, a path consisting of axis-parallel segments whose total length equals the pair's Manhattan distance. Even for d=2d=2, the problem is NP-hard, but constant-factor approximations are known. For d3d \ge 3, the problem is APX-hard; it is known to admit, for any \eps > 0, an O(n^\eps)-approximation. In the generalized minimum Manhattan network problem (GMMN), we are given a set RR of nn terminal pairs, and the goal is to find a minimum-length rectilinear network such that each pair in RR is connected by a Manhattan path. GMMN is a generalization of both MMN and the well-known rectilinear Steiner arborescence problem (RSA). So far, only special cases of GMMN have been considered. We present an O(logd+1n)O(\log^{d+1} n)-approximation algorithm for GMMN (and, hence, MMN) in d2d \ge 2 dimensions and an O(logn)O(\log n)-approximation algorithm for 2D. We show that an existing O(logn)O(\log n)-approximation algorithm for RSA in 2D generalizes easily to d>2d>2 dimensions.Comment: 14 pages, 5 figures; added appendix and figure

    Two-Level Rectilinear Steiner Trees

    Get PDF
    Given a set PP of terminals in the plane and a partition of PP into kk subsets P1,...,PkP_1, ..., P_k, a two-level rectilinear Steiner tree consists of a rectilinear Steiner tree TiT_i connecting the terminals in each set PiP_i (i=1,...,ki=1,...,k) and a top-level tree TtopT_{top} connecting the trees T1,...,TkT_1, ..., T_k. The goal is to minimize the total length of all trees. This problem arises naturally in the design of low-power physical implementations of parity functions on a computer chip. For bounded kk we present a polynomial time approximation scheme (PTAS) that is based on Arora's PTAS for rectilinear Steiner trees after lifting each partition into an extra dimension. For the general case we propose an algorithm that predetermines a connection point for each TiT_i and TtopT_{top} (i=1,...,ki=1,...,k). Then, we apply any approximation algorithm for minimum rectilinear Steiner trees in the plane to compute each TiT_i and TtopT_{top} independently. This gives us a 2.372.37-factor approximation with a running time of O(PlogP)\mathcal{O}(|P|\log|P|) suitable for fast practical computations. The approximation factor reduces to 1.631.63 by applying Arora's approximation scheme in the plane

    Rectilinear Steiner Trees in Narrow Strips

    Get PDF
    A rectilinear Steiner tree for a set PP of points in R2\mathbb{R}^2 is a tree that connects the points in PP using horizontal and vertical line segments. The goal of Minimal Rectilinear Steiner Tree is to find a rectilinear Steiner tree with minimal total length. We investigate how the complexity of Minimal Rectilinear Steiner Tree for point sets PP inside the strip (,+)×[0,δ](-\infty,+\infty)\times [0,\delta] depends on the strip width δ\delta. We obtain two main results. 1) We present an algorithm with running time nO(δ)n^{O(\sqrt{\delta})} for sparse point sets, that is, point sets where each 1×δ1\times\delta rectangle inside the strip contains O(1)O(1) points. 2) For random point sets, where the points are chosen randomly inside a rectangle of height δ\delta and expected width nn, we present an algorithm that is fixed-parameter tractable with respect to δ\delta and linear in nn. It has an expected running time of 2O(δδ)n2^{O(\delta \sqrt{\delta})} n.Comment: 21 pages, 13 figure

    Probability and Problems in Euclidean Combinatorial Optimization

    Get PDF
    This article summarizes the current status of several streams of research that deal with the probability theory of problems of combinatorial optimization. There is a particular emphasis on functionals of finite point sets. The most famous example of such functionals is the length associated with the Euclidean traveling salesman problem (TSP), but closely related problems include the minimal spanning tree problem, minimal matching problems and others. Progress is also surveyed on (1) the approximation and determination of constants whose existence is known by subadditive methods, (2) the central limit problems for several functionals closely related to Euclidean functionals, and (3) analogies in the asymptotic behavior between worst-case and expected-case behavior of Euclidean problems. No attempt has been made in this survey to cover the many important applications of probability to linear programming, arrangement searching or other problems that focus on lines or planes

    Minimizing the stabbing number of matchings, trees, and triangulations

    Full text link
    The (axis-parallel) stabbing number of a given set of line segments is the maximum number of segments that can be intersected by any one (axis-parallel) line. This paper deals with finding perfect matchings, spanning trees, or triangulations of minimum stabbing number for a given set of points. The complexity of these problems has been a long-standing open question; in fact, it is one of the original 30 outstanding open problems in computational geometry on the list by Demaine, Mitchell, and O'Rourke. The answer we provide is negative for a number of minimum stabbing problems by showing them NP-hard by means of a general proof technique. It implies non-trivial lower bounds on the approximability. On the positive side we propose a cut-based integer programming formulation for minimizing the stabbing number of matchings and spanning trees. We obtain lower bounds (in polynomial time) from the corresponding linear programming relaxations, and show that an optimal fractional solution always contains an edge of at least constant weight. This result constitutes a crucial step towards a constant-factor approximation via an iterated rounding scheme. In computational experiments we demonstrate that our approach allows for actually solving problems with up to several hundred points optimally or near-optimally.Comment: 25 pages, 12 figures, Latex. To appear in "Discrete and Computational Geometry". Previous version (extended abstract) appears in SODA 2004, pp. 430-43
    corecore