92 research outputs found

    Evaluation of Link Traversal Query Execution over Decentralized Environments with Structural Assumptions

    Full text link
    To counter societal and economic problems caused by data silos on the Web, efforts such as Solid strive to reclaim private data by storing it in permissioned documents over a large number of personal vaults across the Web. Building applications on top of such a decentralized Knowledge Graph involves significant technical challenges: centralized aggregation prior to query processing is excluded for legal reasons, and current federated querying techniques cannot handle this large scale of distribution at the expected performance. We propose an extension to Link Traversal Query Processing (LTQP) that incorporates structural properties within decentralized environments to tackle their unprecedented scale. In this article, we analyze the structural properties of the Solid decentralization ecosystem that are relevant for query execution, and provide the SolidBench benchmark to simulate Solid environments representatively. We introduce novel LTQP algorithms leveraging these structural properties, and evaluate their effectiveness. Our experiments indicate that these new algorithms obtain accurate results in the order of seconds for non-complex queries, which existing algorithms cannot achieve. Furthermore, we discuss limitations with respect to more complex queries. This work reveals that a traversal-based querying method using structural assumptions can be effective for large-scale decentralization, but that advances are needed in the area of query planning for LTQP to handle more complex queries. These insights open the door to query-driven decentralized applications, in which declarative queries shield developers from the inherent complexity of a decentralized landscape.Comment: Not peer-reviewe

    Serviços de integração de dados para aplicações biomédicas

    Get PDF
    Doutoramento em Informática (MAP-i)In the last decades, the field of biomedical science has fostered unprecedented scientific advances. Research is stimulated by the constant evolution of information technology, delivering novel and diverse bioinformatics tools. Nevertheless, the proliferation of new and disconnected solutions has resulted in massive amounts of resources spread over heterogeneous and distributed platforms. Distinct data types and formats are generated and stored in miscellaneous repositories posing data interoperability challenges and delays in discoveries. Data sharing and integrated access to these resources are key features for successful knowledge extraction. In this context, this thesis makes contributions towards accelerating the semantic integration, linkage and reuse of biomedical resources. The first contribution addresses the connection of distributed and heterogeneous registries. The proposed methodology creates a holistic view over the different registries, supporting semantic data representation, integrated access and querying. The second contribution addresses the integration of heterogeneous information across scientific research, aiming to enable adequate data-sharing services. The third contribution presents a modular architecture to support the extraction and integration of textual information, enabling the full exploitation of curated data. The last contribution lies in providing a platform to accelerate the deployment of enhanced semantic information systems. All the proposed solutions were deployed and validated in the scope of rare diseases.Nas últimas décadas, o campo das ciências biomédicas proporcionou grandes avanços científicos estimulados pela constante evolução das tecnologias de informação. A criação de diversas ferramentas na área da bioinformática e a falta de integração entre novas soluções resultou em enormes quantidades de dados distribuídos por diferentes plataformas. Dados de diferentes tipos e formatos são gerados e armazenados em vários repositórios, o que origina problemas de interoperabilidade e atrasa a investigação. A partilha de informação e o acesso integrado a esses recursos são características fundamentais para a extração bem sucedida do conhecimento científico. Nesta medida, esta tese fornece contribuições para acelerar a integração, ligação e reutilização semântica de dados biomédicos. A primeira contribuição aborda a interconexão de registos distribuídos e heterogéneos. A metodologia proposta cria uma visão holística sobre os diferentes registos, suportando a representação semântica de dados e o acesso integrado. A segunda contribuição aborda a integração de diversos dados para investigações científicas, com o objetivo de suportar serviços interoperáveis para a partilha de informação. O terceiro contributo apresenta uma arquitetura modular que apoia a extração e integração de informações textuais, permitindo a exploração destes dados. A última contribuição consiste numa plataforma web para acelerar a criação de sistemas de informação semânticos. Todas as soluções propostas foram validadas no âmbito das doenças raras

    Engineering Agile Big-Data Systems

    Get PDF
    To be effective, data-intensive systems require extensive ongoing customisation to reflect changing user requirements, organisational policies, and the structure and interpretation of the data they hold. Manual customisation is expensive, time-consuming, and error-prone. In large complex systems, the value of the data can be such that exhaustive testing is necessary before any new feature can be added to the existing design. In most cases, the precise details of requirements, policies and data will change during the lifetime of the system, forcing a choice between expensive modification and continued operation with an inefficient design.Engineering Agile Big-Data Systems outlines an approach to dealing with these problems in software and data engineering, describing a methodology for aligning these processes throughout product lifecycles. It discusses tools which can be used to achieve these goals, and, in a number of case studies, shows how the tools and methodology have been used to improve a variety of academic and business systems

    Linked Research on the Decentralised Web

    Get PDF
    This thesis is about research communication in the context of the Web. I analyse literature which reveals how researchers are making use of Web technologies for knowledge dissemination, as well as how individuals are disempowered by the centralisation of certain systems, such as academic publishing platforms and social media. I share my findings on the feasibility of a decentralised and interoperable information space where researchers can control their identifiers whilst fulfilling the core functions of scientific communication: registration, awareness, certification, and archiving. The contemporary research communication paradigm operates under a diverse set of sociotechnical constraints, which influence how units of research information and personal data are created and exchanged. Economic forces and non-interoperable system designs mean that researcher identifiers and research contributions are largely shaped and controlled by third-party entities; participation requires the use of proprietary systems. From a technical standpoint, this thesis takes a deep look at semantic structure of research artifacts, and how they can be stored, linked and shared in a way that is controlled by individual researchers, or delegated to trusted parties. Further, I find that the ecosystem was lacking a technical Web standard able to fulfill the awareness function of research communication. Thus, I contribute a new communication protocol, Linked Data Notifications (published as a W3C Recommendation) which enables decentralised notifications on the Web, and provide implementations pertinent to the academic publishing use case. So far we have seen decentralised notifications applied in research dissemination or collaboration scenarios, as well as for archival activities and scientific experiments. Another core contribution of this work is a Web standards-based implementation of a clientside tool, dokieli, for decentralised article publishing, annotations and social interactions. dokieli can be used to fulfill the scholarly functions of registration, awareness, certification, and archiving, all in a decentralised manner, returning control of research contributions and discourse to individual researchers. The overarching conclusion of the thesis is that Web technologies can be used to create a fully functioning ecosystem for research communication. Using the framework of Web architecture, and loosely coupling the four functions, an accessible and inclusive ecosystem can be realised whereby users are able to use and switch between interoperable applications without interfering with existing data. Technical solutions alone do not suffice of course, so this thesis also takes into account the need for a change in the traditional mode of thinking amongst scholars, and presents the Linked Research initiative as an ongoing effort toward researcher autonomy in a social system, and universal access to human- and machine-readable information. Outcomes of this outreach work so far include an increase in the number of individuals self-hosting their research artifacts, workshops publishing accessible proceedings on the Web, in-the-wild experiments with open and public peer-review, and semantic graphs of contributions to conference proceedings and journals (the Linked Open Research Cloud). Some of the future challenges include: addressing the social implications of decentralised Web publishing, as well as the design of ethically grounded interoperable mechanisms; cultivating privacy aware information spaces; personal or community-controlled on-demand archiving services; and further design of decentralised applications that are aware of the core functions of scientific communication

    Engineering Agile Big-Data Systems

    Get PDF
    To be effective, data-intensive systems require extensive ongoing customisation to reflect changing user requirements, organisational policies, and the structure and interpretation of the data they hold. Manual customisation is expensive, time-consuming, and error-prone. In large complex systems, the value of the data can be such that exhaustive testing is necessary before any new feature can be added to the existing design. In most cases, the precise details of requirements, policies and data will change during the lifetime of the system, forcing a choice between expensive modification and continued operation with an inefficient design.Engineering Agile Big-Data Systems outlines an approach to dealing with these problems in software and data engineering, describing a methodology for aligning these processes throughout product lifecycles. It discusses tools which can be used to achieve these goals, and, in a number of case studies, shows how the tools and methodology have been used to improve a variety of academic and business systems

    Building the Future Internet through FIRE

    Get PDF
    The Internet as we know it today is the result of a continuous activity for improving network communications, end user services, computational processes and also information technology infrastructures. The Internet has become a critical infrastructure for the human-being by offering complex networking services and end-user applications that all together have transformed all aspects, mainly economical, of our lives. Recently, with the advent of new paradigms and the progress in wireless technology, sensor networks and information systems and also the inexorable shift towards everything connected paradigm, first as known as the Internet of Things and lately envisioning into the Internet of Everything, a data-driven society has been created. In a data-driven society, productivity, knowledge, and experience are dependent on increasingly open, dynamic, interdependent and complex Internet services. The challenge for the Internet of the Future design is to build robust enabling technologies, implement and deploy adaptive systems, to create business opportunities considering increasing uncertainties and emergent systemic behaviors where humans and machines seamlessly cooperate

    The Nexus Between Security Sector Governance/Reform and Sustainable Development Goal-16

    Get PDF
    This Security Sector Reform (SSR) Paper offers a universal and analytical perspective on the linkages between Security Sector Governance (SSG)/SSR (SSG/R) and Sustainable Development Goal-16 (SDG-16), focusing on conflict and post-conflict settings as well as transitional and consolidated democracies. Against the background of development and security literatures traditionally maintaining separate and compartmentalized presence in both academic and policymaking circles, it maintains that the contemporary security- and development-related challenges are inextricably linked, requiring effective measures with an accurate understanding of the nature of these challenges. In that sense, SDG-16 is surely a good step in the right direction. After comparing and contrasting SSG/R and SDG-16, this SSR Paper argues that human security lies at the heart of the nexus between the 2030 Agenda of the United Nations (UN) and SSG/R. To do so, it first provides a brief overview of the scholarly and policymaking literature on the development-security nexus to set the background for the adoption of The Agenda 2030. Next, it reviews the literature on SSG/R and SDGs, and how each concept evolved over time. It then identifies the puzzle this study seeks to address by comparing and contrasting SSG/R with SDG-16. After making a case that human security lies at the heart of the nexus between the UN’s 2030 Agenda and SSG/R, this book analyses the strengths and weaknesses of human security as a bridge between SSG/R and SDG-16 and makes policy recommendations on how SSG/R, bolstered by human security, may help achieve better results on the SDG-16 targets. It specifically emphasizes the importance of transparency, oversight, and accountability on the one hand, and participative approach and local ownership on the other. It concludes by arguing that a simultaneous emphasis on security and development is sorely needed for addressing the issues under the purview of SDG-16

    Big Data in Bioeconomy

    Get PDF
    This edited open access book presents the comprehensive outcome of The European DataBio Project, which examined new data-driven methods to shape a bioeconomy. These methods are used to develop new and sustainable ways to use forest, farm and fishery resources. As a European initiative, the goal is to use these new findings to support decision-makers and producers – meaning farmers, land and forest owners and fishermen. With their 27 pilot projects from 17 countries, the authors examine important sectors and highlight examples where modern data-driven methods were used to increase sustainability. How can farmers, foresters or fishermen use these insights in their daily lives? The authors answer this and other questions for our readers. The first four parts of this book give an overview of the big data technologies relevant for optimal raw material gathering. The next three parts put these technologies into perspective, by showing useable applications from farming, forestry and fishery. The final part of this book gives a summary and a view on the future. With its broad outlook and variety of topics, this book is an enrichment for students and scientists in bioeconomy, biodiversity and renewable resources

    Building the Future Internet through FIRE

    Get PDF
    The Internet as we know it today is the result of a continuous activity for improving network communications, end user services, computational processes and also information technology infrastructures. The Internet has become a critical infrastructure for the human-being by offering complex networking services and end-user applications that all together have transformed all aspects, mainly economical, of our lives. Recently, with the advent of new paradigms and the progress in wireless technology, sensor networks and information systems and also the inexorable shift towards everything connected paradigm, first as known as the Internet of Things and lately envisioning into the Internet of Everything, a data-driven society has been created. In a data-driven society, productivity, knowledge, and experience are dependent on increasingly open, dynamic, interdependent and complex Internet services. The challenge for the Internet of the Future design is to build robust enabling technologies, implement and deploy adaptive systems, to create business opportunities considering increasing uncertainties and emergent systemic behaviors where humans and machines seamlessly cooperate
    • …
    corecore