15,058 research outputs found

    On Methods for the Formal Specification of Fault Tolerant Systems

    Get PDF
    This paper introduces different views for understanding problems and faults with the goal of defining a method for the formal specification of systems. The idea of Layered Fault Tolerant Specification (LFTS) is proposed to make the method extensible to fault tolerant systems. The principle is layering the specification in different levels, the first one for the normal behavior and the others for the abnormal. The abnormal behavior is described in terms of an Error Injector (EI), which represents a model of the erroneous interference coming from the environment. This structure has been inspired by the notion of idealized fault tolerant component but the combination of LFTS and EI using Rely/Guarantee reasoning to describe their interaction can be considered as a novel contribution. The progress toward this method and this way to organize fault tolerant specifications has been made experimenting on case studies and an example is presented.Comment: Presented and published at DEPEND 201

    A TLA+ Formal Specification and Verification of a New Real-Time Communication Protocol

    Get PDF
    AbstractWe describe the formal specification and verification of a new fault-tolerant real-time communication protocol, called DoRiS, which is designed for supporting distributed real-time systems that use a shared high-bandwidth medium. Since such a kind of protocol is reasonably complex and requires high levels of confidence on both timing and safety properties, formal methods are useful. Indeed, the design of DoRiS was strongly based on formal methods, where the TLA+ language and its associated model-checker TLC were the supporting design tool. The protocol conception was improved by using information provided by its formal specification and verification. In the end, a precise and highly reliable protocol description is provided

    Deriving Specifications of Dependable Systems: toward a Method

    Get PDF
    This paper proposes a method for deriving formal specifications of systems. To accomplish this task we pass through a non trivial number of steps, concepts and tools where the first one, the most important, is the concept of method itself, since we realized that computer science has a proliferation of languages but very few methods. We also propose the idea of Layered Fault Tolerant Specification (LFTS) to make the method extensible to dependable systems. The principle is layering the specification, for the sake of clarity, in (at least) two different levels, the first one for the normal behavior and the others (if more than one) for the abnormal. The abnormal behavior is described in terms of an Error Injector (EI) which represents a model of the erroneous interference coming from the environment. This structure has been inspired by the notion of idealized fault tolerant component but the combination of LFTS and EI using rely guarantee thinking to describe interference can be considered one of the main contributions of this work. The progress toward this method and the way to layer specifications has been made experimenting on the Transportation and the Automotive Case Studies of the DEPLOY project.Comment: Published in "12th European Workshop on Dependable Computing, EWDC 2009, Toulouse : France (2009)

    DRS: Derivational Reasoning System

    Get PDF
    The high reliability requirements for airborne systems requires fault-tolerant architectures to address failures in the presence of physical faults, and the elimination of design flaws during the specification and validation phase of the design cycle. Although much progress has been made in developing methods to address physical faults, design flaws remain a serious problem. Formal methods provides a mathematical basis for removing design flaws from digital systems. DRS (Derivational Reasoning System) is a formal design tool based on advanced research in mathematical modeling and formal synthesis. The system implements a basic design algebra for synthesizing digital circuit descriptions from high level functional specifications. DRS incorporates an executable specification language, a set of correctness preserving transformations, verification interface, and a logic synthesis interface, making it a powerful tool for realizing hardware from abstract specifications. DRS integrates recent advances in transformational reasoning, automated theorem proving and high-level CAD synthesis systems in order to provide enhanced reliability in designs with reduced time and cost

    Incorporating component-based design in the category-theoretic framework for composition of fault-tolerant software

    Get PDF
    With the increasing use of software in many systems like telecommunications, e-commerce, manufacturing, etc., and the need for reliable services in these systems, there is an ever-growing demand for providing fault-tolerance. Generally, software is built without concentrating much on the fault-tolerant aspect, and fault-tolerance is typically an additional feature to ensure reliability if ever a failure has been encountered. However, there are many legacy software systems that are being deployed in highly critical applications where fault tolerance is inevitable. Various methods have been put forth in the literature for designing fault-tolerance, including a component-based methodology, wherein fault-tolerance is separated from the functionality, and fault-tolerant components, such as correctors and detectors, are added to achieve the desired reliability. Utilizing the concepts of the component-based design, we propose a category theoretic framework for the composition of these fault-tolerant components with a fault-intolerant program. We illustrate our proposed approach to compose the fault-tolerant components with a fault-intolerant program to result in a final fault-tolerant program through two case studies. In our first case study, we show the feasibility of our approach by composing the fault-tolerant components for a distributed mutual exclusion algorithm using our proposed approach. In the second case study, we decompose the fault-tolerant Label Distribution Protocol and prove the correctness of the design of the fault-tolerant components. Furthermore, the formal specification and verification of these case studies has been conducted using Specware. Some of the benefits of the proposed approach include (a) traceability of all the sorts, operations and properties used to derive the composed program, (b) well-defined interfaces, that allows components to interact in a well-specified behaviour, and (c) reuse of specification for subsequent similar system design

    Logical Specification and Analysis of Fault Tolerant Systems through Partial Model Checking

    Get PDF
    This paper presents a framework for a logical characterisation of fault tolerance and its formal analysis based on partial model checking techniques. The framework requires a fault tolerant system to be modelled using a formal calculus, here the CCS process algebra. To this aim we propose a uniform modelling scheme in which to specify a formal model of the system, its failing behaviour and possibly its fault-recovering procedures. Once a formal model is provided into our scheme, fault tolerance - with respect to a given property - can be formalized as an equational Āµ-calculus formula. This formula expresses in a logic formalism, all the fault scenarios satisfying that fault tolerance property. Such a characterisation understands the analysis of fault tolerance as a form of analysis of open systems and thank to partial model checking strategies, it can be made independent on any particular fault assumption. Moreover this logical characterisation makes possible the fault-tolerance verification problem be expressed as a general Āµ-calculus validation problem, for solving which many theorem proof techniques and tools are available. We present several analysis methods showing the flexibility of our approach

    A bibliography on formal methods for system specification, design and validation

    Get PDF
    Literature on the specification, design, verification, testing, and evaluation of avionics systems was surveyed, providing 655 citations. Journal papers, conference papers, and technical reports are included. Manual and computer-based methods were employed. Keywords used in the online search are listed

    Production of Reliable Flight Crucial Software: Validation Methods Research for Fault Tolerant Avionics and Control Systems Sub-Working Group Meeting

    Get PDF
    The state of the art in the production of crucial software for flight control applications was addressed. The association between reliability metrics and software is considered. Thirteen software development projects are discussed. A short term need for research in the areas of tool development and software fault tolerance was indicated. For the long term, research in format verification or proof methods was recommended. Formal specification and software reliability modeling, were recommended as topics for both short and long term research
    • ā€¦
    corecore