4,359 research outputs found

    Privacy Implications of In-Network Aggregation Mechanisms for VANETs

    Get PDF
    Research on vehicular ad hoc networks (VANETs) is active and ongoing. Proposed applications range from safety applications, and traffic efficiency applications to entertainment applications. Common to many applications is the need to disseminate possibly privacy-sensitive information, such as location and speed information, over larger distances. In-network aggregation is a promising technology that can help to make such privacy-sensitive information only available in the direct vicinity of vehicles instead of communicating it over larger areas. Further away, only aggregated information that is not privacy-relevant anymore will be known. At the same time, aggregation mechanisms help to cope with the limited available wireless bandwidth. However, the exact privacy properties of aggregation mechanisms have still not been thoroughly researched. In this paper, we propose a metric to measure privacy enhancements provided by in-network aggregation and use it to compare existing schemes

    Security and Privacy Issues in Wireless Mesh Networks: A Survey

    Full text link
    This book chapter identifies various security threats in wireless mesh network (WMN). Keeping in mind the critical requirement of security and user privacy in WMNs, this chapter provides a comprehensive overview of various possible attacks on different layers of the communication protocol stack for WMNs and their corresponding defense mechanisms. First, it identifies the security vulnerabilities in the physical, link, network, transport, application layers. Furthermore, various possible attacks on the key management protocols, user authentication and access control protocols, and user privacy preservation protocols are presented. After enumerating various possible attacks, the chapter provides a detailed discussion on various existing security mechanisms and protocols to defend against and wherever possible prevent the possible attacks. Comparative analyses are also presented on the security schemes with regards to the cryptographic schemes used, key management strategies deployed, use of any trusted third party, computation and communication overhead involved etc. The chapter then presents a brief discussion on various trust management approaches for WMNs since trust and reputation-based schemes are increasingly becoming popular for enforcing security in wireless networks. A number of open problems in security and privacy issues for WMNs are subsequently discussed before the chapter is finally concluded.Comment: 62 pages, 12 figures, 6 tables. This chapter is an extension of the author's previous submission in arXiv submission: arXiv:1102.1226. There are some text overlaps with the previous submissio

    Towards new methods for mobility data gathering: content, sources, incentives

    Get PDF
    Over the past decade, huge amounts of work has been done in mobile and opportunistic networking research. Unfortunately, much of this has had little impact as the results have not been applicable to reality, due to incorrect assumptions and models used in the design and evaluation of the systems. In this paper, we outline some of the problems of the assumptions of early research in the field, and provide a survey of some initial work that has started to take place to alleviate this through more realistic modelling and measurements of real systems. We do note that there is still much work to be done in this area, and then go on to identify some important properties of the network that must be studied further. We identify the types of data that are important to measure, and also give some guidelines on finding existing and potentially new sources for such data and incentivizing the holders of the data to share it

    TP-DS: A Heuristic Approach for Traffic Pattern Discovery System in MANET’s

    Get PDF
    As mobile ad hoc network (MANET) systems research has matured and several testbeds have been built to study MANETs, research has focused on developing new MANET applications such as collaborative games, collaborative computing, messaging systems, distributed security schemes, MANET middleware, peer-to-peer file sharing systems, voting systems, resource management and discovery, vehicular computing and collaborative education systems. Many techniques are proposed to enhance the anonymous communication in case of the mobile ad hoc networks (MANETs). However, MANETs are vulnerable under certain circumstances like passive attacks and traffic analysis attacks. Traffic analysis problem expose some of the methods and attacks that could infer MANETs are still weak under the passive attacks. In this Research, proposed ‘Traffic pattern Discovery System in MANET’s, aheuristic approach(TP-DS) , enables a passive global adversary to accurately infer the traffic pattern in an anonymous MANET without compromising any node. TP-DS works well on existing on-demand anonymous MANET routing protocols to determine the source node, destination node and the end-to-end communication path. Detailed simulations show that TP-DS can infer the hidden traffic pattern with accuracy as high than the TP-DS and gives the result with accuracy of 95%. DOI: 10.17762/ijritcc2321-8169.150310

    A Taxonomy for and Analysis of Anonymous Communications Networks

    Get PDF
    Any entity operating in cyberspace is susceptible to debilitating attacks. With cyber attacks intended to gather intelligence and disrupt communications rapidly replacing the threat of conventional and nuclear attacks, a new age of warfare is at hand. In 2003, the United States acknowledged that the speed and anonymity of cyber attacks makes distinguishing among the actions of terrorists, criminals, and nation states difficult. Even President Obama’s Cybersecurity Chief-elect recognizes the challenge of increasingly sophisticated cyber attacks. Now through April 2009, the White House is reviewing federal cyber initiatives to protect US citizen privacy rights. Indeed, the rising quantity and ubiquity of new surveillance technologies in cyberspace enables instant, undetectable, and unsolicited information collection about entities. Hence, anonymity and privacy are becoming increasingly important issues. Anonymization enables entities to protect their data and systems from a diverse set of cyber attacks and preserves privacy. This research provides a systematic analysis of anonymity degradation, preservation and elimination in cyberspace to enhance the security of information assets. This includes discovery/obfuscation of identities and actions of/from potential adversaries. First, novel taxonomies are developed for classifying and comparing well-established anonymous networking protocols. These expand the classical definition of anonymity and capture the peer-to-peer and mobile ad hoc anonymous protocol family relationships. Second, a unique synthesis of state-of-the-art anonymity metrics is provided. This significantly aids an entity’s ability to reliably measure changing anonymity levels; thereby, increasing their ability to defend against cyber attacks. Finally, a novel epistemic-based mathematical model is created to characterize how an adversary reasons with knowledge to degrade anonymity. This offers multiple anonymity property representations and well-defined logical proofs to ensure the accuracy and correctness of current and future anonymous network protocol design

    Privacy in Inter-Vehicular Networks: Why simple pseudonym change is not enough

    Get PDF
    Inter-vehicle communication (IVC) systems disclose rich location information about vehicles. State-of-the-art security architectures are aware of the problem and provide privacy enhancing mechanisms, notably pseudonymous authentication. However, the granularity and the amount of location information IVC protocols divulge, enable an adversary that eavesdrops all traffic throughout an area, to reconstruct long traces of the whereabouts of the majority of vehicles within the same area. Our analysis in this paper confirms the existence of this kind of threat. As a result, it is questionable if strong location privacy is achievable in IVC systems against a powerful adversary.\u
    corecore