2,735 research outputs found

    Computer Vision for Timber Harvesting

    Get PDF

    GASP : Geometric Association with Surface Patches

    Full text link
    A fundamental challenge to sensory processing tasks in perception and robotics is the problem of obtaining data associations across views. We present a robust solution for ascertaining potentially dense surface patch (superpixel) associations, requiring just range information. Our approach involves decomposition of a view into regularized surface patches. We represent them as sequences expressing geometry invariantly over their superpixel neighborhoods, as uniquely consistent partial orderings. We match these representations through an optimal sequence comparison metric based on the Damerau-Levenshtein distance - enabling robust association with quadratic complexity (in contrast to hitherto employed joint matching formulations which are NP-complete). The approach is able to perform under wide baselines, heavy rotations, partial overlaps, significant occlusions and sensor noise. The technique does not require any priors -- motion or otherwise, and does not make restrictive assumptions on scene structure and sensor movement. It does not require appearance -- is hence more widely applicable than appearance reliant methods, and invulnerable to related ambiguities such as textureless or aliased content. We present promising qualitative and quantitative results under diverse settings, along with comparatives with popular approaches based on range as well as RGB-D data.Comment: International Conference on 3D Vision, 201

    Person Re-identification by Local Maximal Occurrence Representation and Metric Learning

    Full text link
    Person re-identification is an important technique towards automatic search of a person's presence in a surveillance video. Two fundamental problems are critical for person re-identification, feature representation and metric learning. An effective feature representation should be robust to illumination and viewpoint changes, and a discriminant metric should be learned to match various person images. In this paper, we propose an effective feature representation called Local Maximal Occurrence (LOMO), and a subspace and metric learning method called Cross-view Quadratic Discriminant Analysis (XQDA). The LOMO feature analyzes the horizontal occurrence of local features, and maximizes the occurrence to make a stable representation against viewpoint changes. Besides, to handle illumination variations, we apply the Retinex transform and a scale invariant texture operator. To learn a discriminant metric, we propose to learn a discriminant low dimensional subspace by cross-view quadratic discriminant analysis, and simultaneously, a QDA metric is learned on the derived subspace. We also present a practical computation method for XQDA, as well as its regularization. Experiments on four challenging person re-identification databases, VIPeR, QMUL GRID, CUHK Campus, and CUHK03, show that the proposed method improves the state-of-the-art rank-1 identification rates by 2.2%, 4.88%, 28.91%, and 31.55% on the four databases, respectively.Comment: This paper has been accepted by CVPR 2015. For source codes and extracted features please visit http://www.cbsr.ia.ac.cn/users/scliao/projects/lomo_xqda

    Modeling of the HIV infection epidemic in the Netherlands: A multi-parameter evidence synthesis approach

    Full text link
    Multi-parameter evidence synthesis (MPES) is receiving growing attention from the epidemiological community as a coherent and flexible analytical framework to accommodate a disparate body of evidence available to inform disease incidence and prevalence estimation. MPES is the statistical methodology adopted by the Health Protection Agency in the UK for its annual national assessment of the HIV epidemic, and is acknowledged by the World Health Organization and UNAIDS as a valuable technique for the estimation of adult HIV prevalence from surveillance data. This paper describes the results of utilizing a Bayesian MPES approach to model HIV prevalence in the Netherlands at the end of 2007, using an array of field data from different study designs on various population risk subgroups and with a varying degree of regional coverage. Auxiliary data and expert opinion were additionally incorporated to resolve issues arising from biased, insufficient or inconsistent evidence. This case study offers a demonstration of the ability of MPES to naturally integrate and critically reconcile disparate and heterogeneous sources of evidence, while producing reliable estimates of HIV prevalence used to support public health decision-making.Comment: Published in at http://dx.doi.org/10.1214/11-AOAS488 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Data mining based learning algorithms for semi-supervised object identification and tracking

    Get PDF
    Sensor exploitation (SE) is the crucial step in surveillance applications such as airport security and search and rescue operations. It allows localization and identification of movement in urban settings and can significantly boost knowledge gathering, interpretation and action. Data mining techniques offer the promise of precise and accurate knowledge acquisition techniques in high-dimensional data domains (and diminishing the “curse of dimensionality” prevalent in such datasets), coupled by algorithmic design in feature extraction, discriminative ranking, feature fusion and supervised learning (classification). Consequently, data mining techniques and algorithms can be used to refine and process captured data and to detect, recognize, classify, and track objects with predictable high degrees of specificity and sensitivity. Automatic object detection and tracking algorithms face several obstacles, such as large and incomplete datasets, ill-defined regions of interest (ROIs), variable scalability, lack of compactness, angular regions, partial occlusions, environmental variables, and unknown potential object classes, which work against their ability to achieve accurate real-time results. Methods must produce fast and accurate results by streamlining image processing, data compression and reduction, feature extraction, classification, and tracking algorithms. Data mining techniques can sufficiently address these challenges by implementing efficient and accurate dimensionality reduction with feature extraction to refine incomplete (ill-partitioning) data-space and addressing challenges related to object classification, intra-class variability, and inter-class dependencies. A series of methods have been developed to combat many of the challenges for the purpose of creating a sensor exploitation and tracking framework for real time image sensor inputs. The framework has been broken down into a series of sub-routines, which work in both series and parallel to accomplish tasks such as image pre-processing, data reduction, segmentation, object detection, tracking, and classification. These methods can be implemented either independently or together to form a synergistic solution to object detection and tracking. The main contributions to the SE field include novel feature extraction methods for highly discriminative object detection, classification, and tracking. Also, a new supervised classification scheme is presented for detecting objects in urban environments. This scheme incorporates both novel features and non-maximal suppression to reduce false alarms, which can be abundant in cluttered environments such as cities. Lastly, a performance evaluation of Graphical Processing Unit (GPU) implementations of the subtask algorithms is presented, which provides insight into speed-up gains throughout the SE framework to improve design for real time applications. The overall framework provides a comprehensive SE system, which can be tailored for integration into a layered sensing scheme to provide the war fighter with automated assistance and support. As more sensor technology and integration continues to advance, this SE framework can provide faster and more accurate decision support for both intelligence and civilian applications

    Positive Semidefinite Metric Learning Using Boosting-like Algorithms

    Get PDF
    The success of many machine learning and pattern recognition methods relies heavily upon the identification of an appropriate distance metric on the input data. It is often beneficial to learn such a metric from the input training data, instead of using a default one such as the Euclidean distance. In this work, we propose a boosting-based technique, termed BoostMetric, for learning a quadratic Mahalanobis distance metric. Learning a valid Mahalanobis distance metric requires enforcing the constraint that the matrix parameter to the metric remains positive definite. Semidefinite programming is often used to enforce this constraint, but does not scale well and easy to implement. BoostMetric is instead based on the observation that any positive semidefinite matrix can be decomposed into a linear combination of trace-one rank-one matrices. BoostMetric thus uses rank-one positive semidefinite matrices as weak learners within an efficient and scalable boosting-based learning process. The resulting methods are easy to implement, efficient, and can accommodate various types of constraints. We extend traditional boosting algorithms in that its weak learner is a positive semidefinite matrix with trace and rank being one rather than a classifier or regressor. Experiments on various datasets demonstrate that the proposed algorithms compare favorably to those state-of-the-art methods in terms of classification accuracy and running time.Comment: 30 pages, appearing in Journal of Machine Learning Researc
    corecore