2,355 research outputs found

    On Markovian multi-class, multi-server queueing

    Get PDF
    Multi-class multi-server queueing problems are a generalisation of the well-known M/M/k queue to arrival processes with clients of N types that require exponentially distributed service with different average service times. In this paper, we give a procedure to construct exact solutions of the stationary state equations using the special structure of these equations. Essential in this procedure is the reduction of a part of the problem to a backward second order difference equation with constant coefficients. It follows that the exact solution can be found by eigenmode decomposition. In general eigenmodes do not have a simple product structure as one might expect intuitively. Further, using the exact solution, all kinds of interesting performance measures can be computed and compared with heuristic approximations (insofar available in the literature). We provide some new approximations based on special multiplicative eigenmodes, including the dominant mode in the heavy traffic limit. We illustrate our methods with numerical results. It turns out that our approximation method is better for higher moments than some other approximations known in the literature. Moreover, we demonstrate that our theory is useful to applications where correlation between items plays a role, such as spare parts management

    Large deviations analysis for the M/H2/n+MM/H_2/n + M queue in the Halfin-Whitt regime

    Full text link
    We consider the FCFS M/H2/n+MM/H_2/n + M queue in the Halfin-Whitt heavy traffic regime. It is known that the normalized sequence of steady-state queue length distributions is tight and converges weakly to a limiting random variable W. However, those works only describe W implicitly as the invariant measure of a complicated diffusion. Although it was proven by Gamarnik and Stolyar that the tail of W is sub-Gaussian, the actual value of limxx2log(P(W>x))\lim_{x \rightarrow \infty}x^{-2}\log(P(W >x)) was left open. In subsequent work, Dai and He conjectured an explicit form for this exponent, which was insensitive to the higher moments of the service distribution. We explicitly compute the true large deviations exponent for W when the abandonment rate is less than the minimum service rate, the first such result for non-Markovian queues with abandonments. Interestingly, our results resolve the conjecture of Dai and He in the negative. Our main approach is to extend the stochastic comparison framework of Gamarnik and Goldberg to the setting of abandonments, requiring several novel and non-trivial contributions. Our approach sheds light on several novel ways to think about multi-server queues with abandonments in the Halfin-Whitt regime, which should hold in considerable generality and provide new tools for analyzing these systems

    A Numerical Approach to Stability of Multiclass Queueing Networks

    Full text link
    The Multi-class Queueing Network (McQN) arises as a natural multi-class extension of the traditional (single-class) Jackson network. In a single-class network subcriticality (i.e. subunitary nominal workload at every station) entails stability, but this is no longer sufficient when jobs/customers of different classes (i.e. with different service requirements and/or routing scheme) visit the same server; therefore, analytical conditions for stability of McQNs are lacking, in general. In this note we design a numerical (simulation-based) method for determining the stability region of a McQN, in terms of arrival rate(s). Our method exploits certain (stochastic) monotonicity properties enjoyed by the associated Markovian queue-configuration process. Stochastic monotonicity is a quite common feature of queueing models and can be easily established in the single-class framework (Jackson networks); recently, also for a wide class of McQNs, including first-come-first-serve (FCFS) networks, monotonicity properties have been established. Here, we provide a minimal set of conditions under which the method performs correctly. Eventually, we illustrate the use of our numerical method by presenting a set of numerical experiments, covering both single and multi-class networks

    Simple and explicit bounds for multi-server queues with 1/(1ρ)1/(1 - \rho) (and sometimes better) scaling

    Full text link
    We consider the FCFS GI/GI/nGI/GI/n queue, and prove the first simple and explicit bounds that scale as 11ρ\frac{1}{1-\rho} (and sometimes better). Here ρ\rho denotes the corresponding traffic intensity. Conceptually, our results can be viewed as a multi-server analogue of Kingman's bound. Our main results are bounds for the tail of the steady-state queue length and the steady-state probability of delay. The strength of our bounds (e.g. in the form of tail decay rate) is a function of how many moments of the inter-arrival and service distributions are assumed finite. More formally, suppose that the inter-arrival and service times (distributed as random variables AA and SS respectively) have finite rrth moment for some r>2.r > 2. Let μA\mu_A (respectively μS\mu_S) denote 1E[A]\frac{1}{\mathbb{E}[A]} (respectively 1E[S]\frac{1}{\mathbb{E}[S]}). Then our bounds (also for higher moments) are simple and explicit functions of E[(AμA)r],E[(SμS)r],r\mathbb{E}\big[(A \mu_A)^r\big], \mathbb{E}\big[(S \mu_S)^r\big], r, and 11ρ\frac{1}{1-\rho} only. Our bounds scale gracefully even when the number of servers grows large and the traffic intensity converges to unity simultaneously, as in the Halfin-Whitt scaling regime. Some of our bounds scale better than 11ρ\frac{1}{1-\rho} in certain asymptotic regimes. More precisely, they scale as 11ρ\frac{1}{1-\rho} multiplied by an inverse polynomial in n(1ρ)2.n(1 - \rho)^2. These results formalize the intuition that bounds should be tighter in light traffic as well as certain heavy-traffic regimes (e.g. with ρ\rho fixed and nn large). In these same asymptotic regimes we also prove bounds for the tail of the steady-state number in service. Our main proofs proceed by explicitly analyzing the bounding process which arises in the stochastic comparison bounds of amarnik and Goldberg for multi-server queues. Along the way we derive several novel results for suprema of random walks and pooled renewal processes which may be of independent interest. We also prove several additional bounds using drift arguments (which have much smaller pre-factors), and make several conjectures which would imply further related bounds and generalizations
    corecore