67 research outputs found

    On MMSE and MAP Denoising Under Sparse Representation Modeling Over a Unitary Dictionary

    Full text link
    Among the many ways to model signals, a recent approach that draws considerable attention is sparse representation modeling. In this model, the signal is assumed to be generated as a random linear combination of a few atoms from a pre-specified dictionary. In this work we analyze two Bayesian denoising algorithms -- the Maximum-Aposteriori Probability (MAP) and the Minimum-Mean-Squared-Error (MMSE) estimators, under the assumption that the dictionary is unitary. It is well known that both these estimators lead to a scalar shrinkage on the transformed coefficients, albeit with a different response curve. In this work we start by deriving closed-form expressions for these shrinkage curves and then analyze their performance. Upper bounds on the MAP and the MMSE estimation errors are derived. We tie these to the error obtained by a so-called oracle estimator, where the support is given, establishing a worst-case gain-factor between the MAP/MMSE estimation errors and the oracle's performance. These denoising algorithms are demonstrated on synthetic signals and on true data (images).Comment: 29 pages, 10 figure

    Power-Constrained Sparse Gaussian Linear Dimensionality Reduction over Noisy Channels

    Get PDF
    In this paper, we investigate power-constrained sensing matrix design in a sparse Gaussian linear dimensionality reduction framework. Our study is carried out in a single--terminal setup as well as in a multi--terminal setup consisting of orthogonal or coherent multiple access channels (MAC). We adopt the mean square error (MSE) performance criterion for sparse source reconstruction in a system where source-to-sensor channel(s) and sensor-to-decoder communication channel(s) are noisy. Our proposed sensing matrix design procedure relies upon minimizing a lower-bound on the MSE in single-- and multiple--terminal setups. We propose a three-stage sensing matrix optimization scheme that combines semi-definite relaxation (SDR) programming, a low-rank approximation problem and power-rescaling. Under certain conditions, we derive closed-form solutions to the proposed optimization procedure. Through numerical experiments, by applying practical sparse reconstruction algorithms, we show the superiority of the proposed scheme by comparing it with other relevant methods. This performance improvement is achieved at the price of higher computational complexity. Hence, in order to address the complexity burden, we present an equivalent stochastic optimization method to the problem of interest that can be solved approximately, while still providing a superior performance over the popular methods.Comment: Accepted for publication in IEEE Transactions on Signal Processing (16 pages

    Sparse and Redundant Representations

    Full text link

    Image Deblurring and Super-resolution by Adaptive Sparse Domain Selection and Adaptive Regularization

    Full text link
    As a powerful statistical image modeling technique, sparse representation has been successfully used in various image restoration applications. The success of sparse representation owes to the development of l1-norm optimization techniques, and the fact that natural images are intrinsically sparse in some domain. The image restoration quality largely depends on whether the employed sparse domain can represent well the underlying image. Considering that the contents can vary significantly across different images or different patches in a single image, we propose to learn various sets of bases from a pre-collected dataset of example image patches, and then for a given patch to be processed, one set of bases are adaptively selected to characterize the local sparse domain. We further introduce two adaptive regularization terms into the sparse representation framework. First, a set of autoregressive (AR) models are learned from the dataset of example image patches. The best fitted AR models to a given patch are adaptively selected to regularize the image local structures. Second, the image non-local self-similarity is introduced as another regularization term. In addition, the sparsity regularization parameter is adaptively estimated for better image restoration performance. Extensive experiments on image deblurring and super-resolution validate that by using adaptive sparse domain selection and adaptive regularization, the proposed method achieves much better results than many state-of-the-art algorithms in terms of both PSNR and visual perception.Comment: 35 pages. This paper is under review in IEEE TI

    Graph Spectral Image Processing

    Full text link
    Recent advent of graph signal processing (GSP) has spurred intensive studies of signals that live naturally on irregular data kernels described by graphs (e.g., social networks, wireless sensor networks). Though a digital image contains pixels that reside on a regularly sampled 2D grid, if one can design an appropriate underlying graph connecting pixels with weights that reflect the image structure, then one can interpret the image (or image patch) as a signal on a graph, and apply GSP tools for processing and analysis of the signal in graph spectral domain. In this article, we overview recent graph spectral techniques in GSP specifically for image / video processing. The topics covered include image compression, image restoration, image filtering and image segmentation

    A Monte Carlo framework for noise removal and missing wedge restoration in cryo-electron tomography

    Get PDF
    In this paper, we describe a statistical method to address an important issue in cryo-electron tomography image analysis: reduction of a high amount of noise and artifacts due to the presence of a missing wedge (MW) in the spectral domain. The method takes as an input a 3D tomo-gram derived from limited-angle tomography, and gives as an output a 3D denoised and artifact compensated volume. The artifact compensation is achieved by filling up the MW with meaningful information. To address this inverse problem, we compute a Minimum Mean Square Error (MMSE) estimator of the uncorrupted image. The underlying high-dimensional integral is computed by applying a dedicated Markov Chain Monte-Carlo (MCMC) sampling procedure based on the Metropolis-Hasting (MH) algorithm. The proposed computational method can be used to enhance visualization or as a pre-processing step for image analysis, including segmentation and classification of macromolecules. Results are presented for both synthetic data and real 3D cryo-electron images
    corecore