41,908 research outputs found

    On some operations and density of m-polar fuzzy graphs

    Get PDF
    AbstractThe theoretical concepts of graphs are highly utilized by computer science applications, social sciences, and medical sciences, especially in computer science for applications such as data mining, image segmentation, clustering, image capturing, and networking. Fuzzy graphs, bipolar fuzzy graphs and the recently developed m-polar fuzzy graphs are growing research topics because they are generalizations of graphs (crisp). In this paper, three new operations, i.e., direct product, semi-strong product and strong product, are defined on m-polar fuzzy graphs. It is proved that any of the products of m-polar fuzzy graphs are again an m-polar fuzzy graph. Sufficient conditions are established for each to be strong, and it is proved that the strong product of two complete m-polar fuzzy graphs is complete. If any of the products of two m-polar fuzzy graphs G1 and G2 are strong, then at least G1 or G2 must be strong. Moreover, the density of an m-polar fuzzy graph is defined, the notion of balanced m-polar fuzzy graph is studied, and necessary and sufficient conditions for the preceding products of two m-polar fuzzy balanced graphs to be balanced are established. Finally, the concept of product m-polar fuzzy graph is introduced, and it is shown that every product m-polar fuzzy graph is an m-polar fuzzy graph. Some operations, like union, direct product, and ring sum are defined to construct new product m-polar fuzzy graphs

    A Study of Regular and Irregular Neutrosophic Graphs with Real Life Applications

    Get PDF
    Fuzzy graph theory is a useful and well-known tool to model and solve many real-life optimization problems. Since real-life problems are often uncertain due to inconsistent and indeterminate information, it is very hard for an expert to model those problems using a fuzzy graph. A neutrosophic graph can deal with the uncertainty associated with the inconsistent and indeterminate information of any real-world problem, where fuzzy graphs may fail to reveal satisfactory results. The concepts of the regularity and degree of a node play a significant role in both the theory and application of graph theory in the neutrosophic environment. In this work, we describe the utility of the regular neutrosophic graph and bipartite neutrosophic graph to model an assignment problem, a road transport network, and a social network. For this purpose, we introduce the definitions of the regular neutrosophic graph, star neutrosophic graph, regular complete neutrosophic graph, complete bipartite neutrosophic graph, and regular strong neutrosophic graph. We define the d m - and t d m -degrees of a node in a regular neutrosophic graph. Depending on the degree of the node, this paper classifies the regularity of a neutrosophic graph into three types, namely d m -regular, t d m -regular, and m-highly irregular neutrosophic graphs. We present some theorems and properties of those regular neutrosophic graphs. The concept of an m-highly irregular neutrosophic graph on cycle and path graphs is also investigated in this paper. The definition of busy and free nodes in a regular neutrosophic graph is presented here. We introduce the idea of the &mu -complement and h-morphism of a regular neutrosophic graph. Some properties of complement and isomorphic regular neutrosophic graphs are presented here. Document type: Articl

    Interval-valued fuzzy graphs

    Full text link
    We define the Cartesian product, composition, union and join on interval-valued fuzzy graphs and investigate some of their properties. We also introduce the notion of interval-valued fuzzy complete graphs and present some properties of self complementary and self weak complementary interval-valued fuzzy complete graphs

    Properties of Bipolar Fuzzy Hypergraphs

    Full text link
    In this article, we apply the concept of bipolar fuzzy sets to hypergraphs and investigate some properties of bipolar fuzzy hypergraphs. We introduce the notion of A−A- tempered bipolar fuzzy hypergraphs and present some of their properties. We also present application examples of bipolar fuzzy hypergraphs

    Hopf algebras for matroids over hyperfields

    Full text link
    Recently, M.~Baker and N.~Bowler introduced the notion of matroids over hyperfields as a unifying theory of various generalizations of matroids. In this paper we generalize the notion of minors and direct sums from ordinary matroids to matroids over hyperfields. Using this we generalize the classical construction of matroid-minor Hopf algebras to the case of matroids over hyperfields
    • …
    corecore