47,467 research outputs found

    On Low-rank Trace Regression under General Sampling Distribution

    Full text link
    A growing number of modern statistical learning problems involve estimating a large number of parameters from a (smaller) number of noisy observations. In a subset of these problems (matrix completion, matrix compressed sensing, and multi-task learning) the unknown parameters form a high-dimensional matrix B*, and two popular approaches for the estimation are convex relaxation of rank-penalized regression or non-convex optimization. It is also known that these estimators satisfy near optimal error bounds under assumptions on rank, coherence, or spikiness of the unknown matrix. In this paper, we introduce a unifying technique for analyzing all of these problems via both estimators that leads to short proofs for the existing results as well as new results. Specifically, first we introduce a general notion of spikiness for B* and consider a general family of estimators and prove non-asymptotic error bounds for the their estimation error. Our approach relies on a generic recipe to prove restricted strong convexity for the sampling operator of the trace regression. Second, and most notably, we prove similar error bounds when the regularization parameter is chosen via K-fold cross-validation. This result is significant in that existing theory on cross-validated estimators do not apply to our setting since our estimators are not known to satisfy their required notion of stability. Third, we study applications of our general results to four subproblems of (1) matrix completion, (2) multi-task learning, (3) compressed sensing with Gaussian ensembles, and (4) compressed sensing with factored measurements. For (1), (3), and (4) we recover matching error bounds as those found in the literature, and for (2) we obtain (to the best of our knowledge) the first such error bound. We also demonstrate how our frameworks applies to the exact recovery problem in (3) and (4).Comment: 32 pages, 1 figur

    A Max-Norm Constrained Minimization Approach to 1-Bit Matrix Completion

    Get PDF
    We consider in this paper the problem of noisy 1-bit matrix completion under a general non-uniform sampling distribution using the max-norm as a convex relaxation for the rank. A max-norm constrained maximum likelihood estimate is introduced and studied. The rate of convergence for the estimate is obtained. Information-theoretical methods are used to establish a minimax lower bound under the general sampling model. The minimax upper and lower bounds together yield the optimal rate of convergence for the Frobenius norm loss. Computational algorithms and numerical performance are also discussed.Comment: 33 pages, 3 figure

    A Statistical Perspective on Randomized Sketching for Ordinary Least-Squares

    Full text link
    We consider statistical as well as algorithmic aspects of solving large-scale least-squares (LS) problems using randomized sketching algorithms. For a LS problem with input data (X,Y)∈Rn×p×Rn(X, Y) \in \mathbb{R}^{n \times p} \times \mathbb{R}^n, sketching algorithms use a sketching matrix, S∈Rr×nS\in\mathbb{R}^{r \times n} with r≪nr \ll n. Then, rather than solving the LS problem using the full data (X,Y)(X,Y), sketching algorithms solve the LS problem using only the sketched data (SX,SY)(SX, SY). Prior work has typically adopted an algorithmic perspective, in that it has made no statistical assumptions on the input XX and YY, and instead it has been assumed that the data (X,Y)(X,Y) are fixed and worst-case (WC). Prior results show that, when using sketching matrices such as random projections and leverage-score sampling algorithms, with p<r≪np < r \ll n, the WC error is the same as solving the original problem, up to a small constant. From a statistical perspective, we typically consider the mean-squared error performance of randomized sketching algorithms, when data (X,Y)(X, Y) are generated according to a statistical model Y=Xβ+ϵY = X \beta + \epsilon, where ϵ\epsilon is a noise process. We provide a rigorous comparison of both perspectives leading to insights on how they differ. To do this, we first develop a framework for assessing algorithmic and statistical aspects of randomized sketching methods. We then consider the statistical prediction efficiency (PE) and the statistical residual efficiency (RE) of the sketched LS estimator; and we use our framework to provide upper bounds for several types of random projection and random sampling sketching algorithms. Among other results, we show that the RE can be upper bounded when p<r≪np < r \ll n while the PE typically requires the sample size rr to be substantially larger. Lower bounds developed in subsequent results show that our upper bounds on PE can not be improved.Comment: 27 pages, 5 figure

    Noisy low-rank matrix completion with general sampling distribution

    Full text link
    In the present paper, we consider the problem of matrix completion with noise. Unlike previous works, we consider quite general sampling distribution and we do not need to know or to estimate the variance of the noise. Two new nuclear-norm penalized estimators are proposed, one of them of "square-root" type. We analyse their performance under high-dimensional scaling and provide non-asymptotic bounds on the Frobenius norm error. Up to a logarithmic factor, these performance guarantees are minimax optimal in a number of circumstances.Comment: Published in at http://dx.doi.org/10.3150/12-BEJ486 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm
    • …
    corecore