92 research outputs found

    On Low Treewidth Approximations of Conjunctive Queries

    Get PDF
    We recently initiated the study of approximations of conjunctive queries within classes that admit tractable query evaluation (with respect to combined complexity). Those include classes of acyclic, bounded treewidth, or bounded hypertreewidth queries. Such approximations are always guaranteed to exist. However, while for acyclic and bounded hypertreewidth queries we have shown a number of examples of interesting approximations, for queries of bounded treewidth the study had been restricted to queries over graphs, where such approximations usually trivialize. In this note we show that for relations of arity greater than two, the notion of low treewidth approximations is a rich one, as many queries possess them. In fact we look at approximations of queries of maximum possible treewidth by queries of minimum possible treewidth (i.e., one), and show that even in this case the structure of approximations remain rather rich as long as input relations are not binary

    Oblivious Bounds on the Probability of Boolean Functions

    Full text link
    This paper develops upper and lower bounds for the probability of Boolean functions by treating multiple occurrences of variables as independent and assigning them new individual probabilities. We call this approach dissociation and give an exact characterization of optimal oblivious bounds, i.e. when the new probabilities are chosen independent of the probabilities of all other variables. Our motivation comes from the weighted model counting problem (or, equivalently, the problem of computing the probability of a Boolean function), which is #P-hard in general. By performing several dissociations, one can transform a Boolean formula whose probability is difficult to compute, into one whose probability is easy to compute, and which is guaranteed to provide an upper or lower bound on the probability of the original formula by choosing appropriate probabilities for the dissociated variables. Our new bounds shed light on the connection between previous relaxation-based and model-based approximations and unify them as concrete choices in a larger design space. We also show how our theory allows a standard relational database management system (DBMS) to both upper and lower bound hard probabilistic queries in guaranteed polynomial time.Comment: 34 pages, 14 figures, supersedes: http://arxiv.org/abs/1105.281

    Answer Counting Under Guarded TGDs

    Get PDF
    We study the complexity of answer counting for ontology-mediated queries and for querying under constraints, considering conjunctive queries and unions thereof (UCQs) as the query language and guarded TGDs as the ontology and constraint language, respectively. Our main result is a classification according to whether answer counting is fixed-parameter tractable (FPT), W[1]-equivalent, #W[1]-equivalent, #W[2]-hard, or #A[2]-equivalent, lifting a recent classification for UCQs without ontologies and constraints due to Dell et al. [Holger Dell et al., 2019]. The classification pertains to various structural measures, namely treewidth, contract treewidth, starsize, and linked matching number. Our results rest on the assumption that the arity of relation symbols is bounded by a constant and, in the case of ontology-mediated querying, that all symbols from the ontology and query can occur in the data (so-called full data schema). We also study the meta-problems for the mentioned structural measures, that is, to decide whether a given ontology-mediated query or constraint-query specification is equivalent to one for which the structural measure is bounded

    Computing the shapley value in allocation problems: Approximations and bounds, with an application to the Italian VQR research assessment program

    Get PDF
    In allocation problems, a given set of goods are assigned to agents in such a way that the social welfare is maximized, that is, the largest possible global worth is achieved. When goods are indivisible, it is possible to use money compensation to perform a fair allocation taking into account the actual contribution of all agents to the social welfare. Coalitional games provide a formal mathematical framework to model such problems, in particular the Shapley value is a solution concept widely used for assigning worths to agents in a fair way. Unfortunately, computing this value is a #P-hard problem, so that applying this good theoretical notion is often quite difficult in real-world problems. In this paper, we first review the application of the Shapley value to an allocation problem that models the evaluation of the Italian research structures with a procedure known as VQR. For large universities, the problem involves thousands of agents and goods (here, researchers and their research products). We then describe some useful properties that allow us to greatly simplify many such large instances. Moreover, we propose new algorithms for computing lower bounds and upper bounds of the Shapley value, which in some cases provide the exact result and that can be combined with approximation algorithms. The proposed techniques have been tested on large real-world instances of the VQR research evaluation problem

    Efficient approximations of conjunctive queries

    Get PDF
    When finding exact answers to a query over a large database is infeasible, it is natural to approximate the query by a more efficient one that comes from a class with good bounds on the complexity of query evaluation. In this paper we study such approximations for conjunctive queries. These queries are of special importance in databases, and we have a very good understanding of the classes that admit fast query evaluation, such as acyclic, or bounded (hyper)treewidth queries. We define approximations of a given query Q as queries from one of those classes that disagree with Q as little as possible. We mostly concentrate on approximations that are guaranteed to return correct answers. We prove that for the above classes of tractable conjunctive queries, approximations always exist, and are at most polynomial in the size of the original query. This follows from general results we establish that relate closure properties of classes of conjunctive queries to the existence of approximations. We also show that in many cases, the size of approximations is bounded by the size of the query they approximate. We establish a number of results showing how combinatorial properties of queries affect properties of their approximations, study bounds on the number of approximations, as well as the complexity of finding and identifying approximations. We also look at approximations that return all correct answers and study their properties

    Travelling on Graphs with Small Highway Dimension

    Get PDF
    We study the Travelling Salesperson (TSP) and the Steiner Tree problem (STP) in graphs of low highway dimension. This graph parameter was introduced by Abraham et al. [SODA 2010] as a model for transportation networks, on which TSP and STP naturally occur for various applications in logistics. It was previously shown [Feldmann et al. ICALP 2015] that these problems admit a quasi-polynomial time approximation scheme (QPTAS) on graphs of constant highway dimension. We demonstrate that a significant improvement is possible in the special case when the highway dimension is 1, for which we present a fully-polynomial time approximation scheme (FPTAS). We also prove that STP is weakly NP-hard for these restricted graphs. For TSP we show NP-hardness for graphs of highway dimension 6, which answers an open problem posed in [Feldmann et al. ICALP 2015]

    The Limits of Efficiency for Open- and Closed-World Query Evaluation Under Guarded TGDs

    Get PDF
    Ontology-mediated querying and querying in the presence of constraints are two key database problems where tuple-generating dependencies (TGDs) play a central role. In ontology-mediated querying, TGDs can formalize the ontology and thus derive additional facts from the given data, while in querying in the presence of constraints, they restrict the set of admissible databases. In this work, we study the limits of efficient query evaluation in the context of the above two problems, focussing on guarded and frontier-guarded TGDs and on UCQs as the actual queries. We show that a class of ontology-mediated queries (OMQs) based on guarded TGDs can be evaluated in FPT iff the OMQs in the class are equivalent to OMQs in which the actual query has bounded treewidth, up to some reasonable assumptions. For querying in the presence of constraints, we consider classes of constraint-query specifications (CQSs) that bundle a set of constraints with an actual query. We show a dichotomy result for CQSs based on guarded TGDs that parallels the one for OMQs except that, additionally, FPT coincides with PTime combined complexity. The proof is based on a novel connection between OMQ and CQS evaluation. Using a direct proof, we also show a similar dichotomy result, again up to some reasonable assumptions, for CQSs based on frontier-guarded TGDs with a bounded number of atoms in TGD heads. Our results on CQSs can be viewed as extensions of Grohe's well-known characterization of the tractable classes of CQs (without constraints). Like Grohe's characterization, all the above results assume that the arity of relation symbols is bounded by a constant. We also study the associated meta problems, i.e., whether a given OMQ or CQS is equivalent to one in which the actual query has bounded treewidth

    On space efficiency of algorithms working on structural decompositions of graphs

    Get PDF
    Dynamic programming on path and tree decompositions of graphs is a technique that is ubiquitous in the field of parameterized and exponential-time algorithms. However, one of its drawbacks is that the space usage is exponential in the decomposition's width. Following the work of Allender et al. [Theory of Computing, '14], we investigate whether this space complexity explosion is unavoidable. Using the idea of reparameterization of Cai and Juedes [J. Comput. Syst. Sci., '03], we prove that the question is closely related to a conjecture that the Longest Common Subsequence problem parameterized by the number of input strings does not admit an algorithm that simultaneously uses XP time and FPT space. Moreover, we complete the complexity landscape sketched for pathwidth and treewidth by Allender et al. by considering the parameter tree-depth. We prove that computations on tree-depth decompositions correspond to a model of non-deterministic machines that work in polynomial time and logarithmic space, with access to an auxiliary stack of maximum height equal to the decomposition's depth. Together with the results of Allender et al., this describes a hierarchy of complexity classes for polynomial-time non-deterministic machines with different restrictions on the access to working space, which mirrors the classic relations between treewidth, pathwidth, and tree-depth.Comment: An extended abstract appeared in the proceedings of STACS'16. The new version is augmented with a space-efficient algorithm for Dominating Set using the Chinese remainder theore

    Diversity of Answers to Conjunctive Queries

    Get PDF
    Enumeration problems aim at outputting, without repetition, the set of solutions to a given problem instance. However, outputting the entire solution set may be prohibitively expensive if it is too big. In this case, outputting a small, sufficiently diverse subset of the solutions would be preferable. This leads to the Diverse-version of the original enumeration problem, where the goal is to achieve a certain level d of diversity by selecting k solutions. In this paper, we look at the Diverse-version of the query answering problem for Conjunctive Queries and extensions thereof. That is, we study the problem if it is possible to achieve a certain level d of diversity by selecting k answers to the given query and, in the positive case, to actually compute such k answers.Comment: 34 pages, accepted to ICDT 202
    • 

    corecore