1,658 research outputs found

    Grad and classes with bounded expansion I. decompositions

    Full text link
    We introduce classes of graphs with bounded expansion as a generalization of both proper minor closed classes and degree bounded classes. Such classes are based on a new invariant, the greatest reduced average density (grad) of G with rank r, grad r(G). For these classes we prove the existence of several partition results such as the existence of low tree-width and low tree-depth colorings. This generalizes and simplifies several earlier results (obtained for minor closed classes)

    Grad and Classes with Bounded Expansion II. Algorithmic Aspects

    Full text link
    Classes of graphs with bounded expansion are a generalization of both proper minor closed classes and degree bounded classes. Such classes are based on a new invariant, the greatest reduced average density (grad) of G with rank r, ∇r(G). These classes are also characterized by the existence of several partition results such as the existence of low tree-width and low tree-depth colorings. These results lead to several new linear time algorithms, such as an algorithm for counting all the isomorphs of a fixed graph in an input graph or an algorithm for checking whether there exists a subset of vertices of a priori bounded size such that the subgraph induced by this subset satisfies some arbirtrary but fixed first order sentence. We also show that for fixed p, computing the distances between two vertices up to distance p may be performed in constant time per query after a linear time preprocessing. We also show, extending several earlier results, that a class of graphs has sublinear separators if it has sub-exponential expansion. This result result is best possible in general

    Grid Representations and the Chromatic Number

    Get PDF
    A grid drawing of a graph maps vertices to grid points and edges to line segments that avoid grid points representing other vertices. We show that there is a number of grid points that some line segment of an arbitrary grid drawing must intersect. This number is closely connected to the chromatic number. Second, we study how many columns we need to draw a graph in the grid, introducing some new \NP-complete problems. Finally, we show that any planar graph has a planar grid drawing where every line segment contains exactly two grid points. This result proves conjectures asked by David Flores-Pe\~naloza and Francisco Javier Zaragoza Martinez.Comment: 22 pages, 8 figure

    Approximating Hereditary Discrepancy via Small Width Ellipsoids

    Full text link
    The Discrepancy of a hypergraph is the minimum attainable value, over two-colorings of its vertices, of the maximum absolute imbalance of any hyperedge. The Hereditary Discrepancy of a hypergraph, defined as the maximum discrepancy of a restriction of the hypergraph to a subset of its vertices, is a measure of its complexity. Lovasz, Spencer and Vesztergombi (1986) related the natural extension of this quantity to matrices to rounding algorithms for linear programs, and gave a determinant based lower bound on the hereditary discrepancy. Matousek (2011) showed that this bound is tight up to a polylogarithmic factor, leaving open the question of actually computing this bound. Recent work by Nikolov, Talwar and Zhang (2013) showed a polynomial time O~(log3n)\tilde{O}(\log^3 n)-approximation to hereditary discrepancy, as a by-product of their work in differential privacy. In this paper, we give a direct simple O(log3/2n)O(\log^{3/2} n)-approximation algorithm for this problem. We show that up to this approximation factor, the hereditary discrepancy of a matrix AA is characterized by the optimal value of simple geometric convex program that seeks to minimize the largest \ell_{\infty} norm of any point in a ellipsoid containing the columns of AA. This characterization promises to be a useful tool in discrepancy theory

    Computing the Chromatic Number Using Graph Decompositions via Matrix Rank

    Get PDF
    Computing the smallest number qq such that the vertices of a given graph can be properly qq-colored is one of the oldest and most fundamental problems in combinatorial optimization. The qq-Coloring problem has been studied intensively using the framework of parameterized algorithmics, resulting in a very good understanding of the best-possible algorithms for several parameterizations based on the structure of the graph. While there is an abundance of work for parameterizations based on decompositions of the graph by vertex separators, almost nothing is known about parameterizations based on edge separators. We fill this gap by studying qq-Coloring parameterized by cutwidth, and parameterized by pathwidth in bounded-degree graphs. Our research uncovers interesting new ways to exploit small edge separators. We present two algorithms for qq-Coloring parameterized by cutwidth cutwcutw: a deterministic one that runs in time O(2ωcutw)O^*(2^{\omega \cdot cutw}), where ω\omega is the matrix multiplication constant, and a randomized one with runtime O(2cutw)O^*(2^{cutw}). In sharp contrast to earlier work, the running time is independent of qq. The dependence on cutwidth is optimal: we prove that even 3-Coloring cannot be solved in O((2ε)cutw)O^*((2-\varepsilon)^{cutw}) time assuming the Strong Exponential Time Hypothesis (SETH). Our algorithms rely on a new rank bound for a matrix that describes compatible colorings. Combined with a simple communication protocol for evaluating a product of two polynomials, this also yields an O((d/2+1)pw)O^*((\lfloor d/2\rfloor+1)^{pw}) time randomized algorithm for qq-Coloring on graphs of pathwidth pwpw and maximum degree dd. Such a runtime was first obtained by Bj\"orklund, but only for graphs with few proper colorings. We also prove that this result is optimal in the sense that no O((d/2+1ε)pw)O^*((\lfloor d/2\rfloor+1-\varepsilon)^{pw})-time algorithm exists assuming SETH.Comment: 29 pages. An extended abstract appears in the proceedings of the 26th Annual European Symposium on Algorithms, ESA 201

    Rainbow independent sets on dense graph classes

    Full text link
    Given a family I\mathcal{I} of independent sets in a graph, a rainbow independent set is an independent set II such that there is an injection ϕ ⁣:II\phi\colon I\to \mathcal{I} where for each vIv\in I, vv is contained in ϕ(v)\phi(v). Aharoni, Briggs, J. Kim, and M. Kim [Rainbow independent sets in certain classes of graphs. arXiv:1909.13143] determined for various graph classes C\mathcal{C} whether C\mathcal{C} satisfies a property that for every nn, there exists N=N(C,n)N=N(\mathcal{C},n) such that every family of NN independent sets of size nn in a graph in C\mathcal{C} contains a rainbow independent set of size nn. In this paper, we add two dense graph classes satisfying this property, namely, the class of graphs of bounded neighborhood diversity and the class of rr-powers of graphs in a bounded expansion class
    corecore