14,130 research outputs found

    Force-induced misfolding in RNA

    Get PDF
    RNA folding is a kinetic process governed by the competition of a large number of structures stabilized by the transient formation of base pairs that may induce complex folding pathways and the formation of misfolded structures. Despite of its importance in modern biophysics, the current understanding of RNA folding kinetics is limited by the complex interplay between the weak base-pair interactions that stabilize the native structure and the disordering effect of thermal forces. The possibility of mechanically pulling individual molecules offers a new perspective to understand the folding of nucleic acids. Here we investigate the folding and misfolding mechanism in RNA secondary structures pulled by mechanical forces. We introduce a model based on the identification of the minimal set of structures that reproduce the patterns of force-extension curves obtained in single molecule experiments. The model requires only two fitting parameters: the attempt frequency at the level of individual base pairs and a parameter associated to a free energy correction that accounts for the configurational entropy of an exponentially large number of neglected secondary structures. We apply the model to interpret results recently obtained in pulling experiments in the three-helix junction S15 RNA molecule (RNAS15). We show that RNAS15 undergoes force-induced misfolding where force favors the formation of a stable non-native hairpin. The model reproduces the pattern of unfolding and refolding force-extension curves, the distribution of breakage forces and the misfolding probability obtained in the experiments.Comment: 28 pages, 11 figure

    Frustration in Biomolecules

    Get PDF
    Biomolecules are the prime information processing elements of living matter. Most of these inanimate systems are polymers that compute their structures and dynamics using as input seemingly random character strings of their sequence, following which they coalesce and perform integrated cellular functions. In large computational systems with a finite interaction-codes, the appearance of conflicting goals is inevitable. Simple conflicting forces can lead to quite complex structures and behaviors, leading to the concept of "frustration" in condensed matter. We present here some basic ideas about frustration in biomolecules and how the frustration concept leads to a better appreciation of many aspects of the architecture of biomolecules, and how structure connects to function. These ideas are simultaneously both seductively simple and perilously subtle to grasp completely. The energy landscape theory of protein folding provides a framework for quantifying frustration in large systems and has been implemented at many levels of description. We first review the notion of frustration from the areas of abstract logic and its uses in simple condensed matter systems. We discuss then how the frustration concept applies specifically to heteropolymers, testing folding landscape theory in computer simulations of protein models and in experimentally accessible systems. Studying the aspects of frustration averaged over many proteins provides ways to infer energy functions useful for reliable structure prediction. We discuss how frustration affects folding, how a large part of the biological functions of proteins are related to subtle local frustration effects and how frustration influences the appearance of metastable states, the nature of binding processes, catalysis and allosteric transitions. We hope to illustrate how Frustration is a fundamental concept in relating function to structural biology.Comment: 97 pages, 30 figure

    Kinefold web server for RNA/DNA folding path and structure prediction including pseudoknots and knots

    Get PDF
    The Kinefold web server provides a web interface for stochastic folding simulations of nucleic acids on second to minute molecular time scales. Renaturation or co-transcriptional folding paths are simulated at the level of helix formation and dissociation in agreement with the seminal experimental results. Pseudoknots and topologically ‘entangled’ helices (i.e. knots) are efficiently predicted taking into account simple geometrical and topological constraints. To encourage interactivity, simulations launched as immediate jobs are automatically stopped after a few seconds and return adapted recommendations. Users can then choose to continue incomplete simulations using the batch queuing system or go back and modify suggested options in their initial query. Detailed output provide (i) a series of low free energy structures, (ii) an online animated folding path and (iii) a programmable trajectory plot focusing on a few helices of interest to each user. The service can be accessed at

    The development of aptamer-based probes for the detection of TB antigens ESAT-6.CFP-10 potential TB diagnostic tools

    Get PDF
    Includes abstract.Includes bibliographical references.Lack of point-of-care (PoC) diagnostic tools for TB hinders control of the disease, particularly in resource-limited, high HIV and TB prevalence countries. Therefore, there is a need for simple, rapid, accurate, and affordable PoC diagnostics to detect active TB early enough for opportune intervention. To develop TB detection probes that will constitute such diagnostics, our research group recently isolated DNA aptamers that bind to a putative marker for active TB; the ESAT-6.CFP-10 heterodimer. Aptamers are highly specific artificial mimics of antibodies that have shown great prospects in diagnostic applications. The aim of this study was to characterise the anti-ESAT-6.CFP-10 aptamers, and to optimise them into more specific and affordable detection probes for the development of potential PoC TB diagnostic tools

    Introduction to protein folding for physicists

    Get PDF
    The prediction of the three-dimensional native structure of proteins from the knowledge of their amino acid sequence, known as the protein folding problem, is one of the most important yet unsolved issues of modern science. Since the conformational behaviour of flexible molecules is nothing more than a complex physical problem, increasingly more physicists are moving into the study of protein systems, bringing with them powerful mathematical and computational tools, as well as the sharp intuition and deep images inherent to the physics discipline. This work attempts to facilitate the first steps of such a transition. In order to achieve this goal, we provide an exhaustive account of the reasons underlying the protein folding problem enormous relevance and summarize the present-day status of the methods aimed to solving it. We also provide an introduction to the particular structure of these biological heteropolymers, and we physically define the problem stating the assumptions behind this (commonly implicit) definition. Finally, we review the 'special flavor' of statistical mechanics that is typically used to study the astronomically large phase spaces of macromolecules. Throughout the whole work, much material that is found scattered in the literature has been put together here to improve comprehension and to serve as a handy reference.Comment: 53 pages, 18 figures, the figures are at a low resolution due to arXiv restrictions, for high-res figures, go to http://www.pabloechenique.co
    • …
    corecore