1,024 research outputs found

    On Longest Repeat Queries Using GPU

    Full text link
    Repeat finding in strings has important applications in subfields such as computational biology. The challenge of finding the longest repeats covering particular string positions was recently proposed and solved by \.{I}leri et al., using a total of the optimal O(n)O(n) time and space, where nn is the string size. However, their solution can only find the \emph{leftmost} longest repeat for each of the nn string position. It is also not known how to parallelize their solution. In this paper, we propose a new solution for longest repeat finding, which although is theoretically suboptimal in time but is conceptually simpler and works faster and uses less memory space in practice than the optimal solution. Further, our solution can find \emph{all} longest repeats of every string position, while still maintaining a faster processing speed and less memory space usage. Moreover, our solution is \emph{parallelizable} in the shared memory architecture (SMA), enabling it to take advantage of the modern multi-processor computing platforms such as the general-purpose graphics processing units (GPU). We have implemented both the sequential and parallel versions of our solution. Experiments with both biological and non-biological data show that our sequential and parallel solutions are faster than the optimal solution by a factor of 2--3.5 and 6--14, respectively, and use less memory space.Comment: 14 page

    High Performance Computing for DNA Sequence Alignment and Assembly

    Get PDF
    Recent advances in DNA sequencing technology have dramatically increased the scale and scope of DNA sequencing. These data are used for a wide variety of important biological analyzes, including genome sequencing, comparative genomics, transcriptome analysis, and personalized medicine but are complicated by the volume and complexity of the data involved. Given the massive size of these datasets, computational biology must draw on the advances of high performance computing. Two fundamental computations in computational biology are read alignment and genome assembly. Read alignment maps short DNA sequences to a reference genome to discover conserved and polymorphic regions of the genome. Genome assembly computes the sequence of a genome from many short DNA sequences. Both computations benefit from recent advances in high performance computing to efficiently process the huge datasets involved, including using highly parallel graphics processing units (GPUs) as high performance desktop processors, and using the MapReduce framework coupled with cloud computing to parallelize computation to large compute grids. This dissertation demonstrates how these technologies can be used to accelerate these computations by orders of magnitude, and have the potential to make otherwise infeasible computations practical

    Trajectory Similarity Measurement: An Efficiency Perspective

    Full text link
    Trajectories that capture object movement have numerous applications, in which similarity computation between trajectories often plays a key role. Traditionally, the similarity between two trajectories is quantified by means of heuristic measures, e.g., Hausdorff or ERP, that operate directly on the trajectories. In contrast, recent studies exploit deep learning to map trajectories to d-dimensional vectors, called embeddings. Then, some distance measure, e.g., Manhattan or Euclidean, is applied to the embeddings to quantify trajectory similarity. The resulting similarities are inaccurate: they only approximate the similarities obtained using the heuristic measures. As distance computation on embeddings is efficient, focus has been on achieving embeddings yielding high accuracy. Adopting an efficiency perspective, we analyze the time complexities of both the heuristic and the learning-based approaches, finding that the time complexities of the former approaches are not necessarily higher. Through extensive experiments on open datasets, we find that, on both CPUs and GPUs, only a few learning-based approaches can deliver the promised higher efficiency, when the embeddings can be pre-computed, while heuristic approaches are more efficient for one-off computations. Among the learning-based approaches, the self-attention-based ones are the fastest to learn embeddings that also yield the highest accuracy for similarity queries. These results have implications for the use of trajectory similarity approaches given different application requirements

    High-throughput sequence alignment using Graphics Processing Units

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The recent availability of new, less expensive high-throughput DNA sequencing technologies has yielded a dramatic increase in the volume of sequence data that must be analyzed. These data are being generated for several purposes, including genotyping, genome resequencing, metagenomics, and <it>de novo </it>genome assembly projects. Sequence alignment programs such as MUMmer have proven essential for analysis of these data, but researchers will need ever faster, high-throughput alignment tools running on inexpensive hardware to keep up with new sequence technologies.</p> <p>Results</p> <p>This paper describes MUMmerGPU, an open-source high-throughput parallel pairwise local sequence alignment program that runs on commodity Graphics Processing Units (GPUs) in common workstations. MUMmerGPU uses the new Compute Unified Device Architecture (CUDA) from nVidia to align multiple query sequences against a single reference sequence stored as a suffix tree. By processing the queries in parallel on the highly parallel graphics card, MUMmerGPU achieves more than a 10-fold speedup over a serial CPU version of the sequence alignment kernel, and outperforms the exact alignment component of MUMmer on a high end CPU by 3.5-fold in total application time when aligning reads from recent sequencing projects using Solexa/Illumina, 454, and Sanger sequencing technologies.</p> <p>Conclusion</p> <p>MUMmerGPU is a low cost, ultra-fast sequence alignment program designed to handle the increasing volume of data produced by new, high-throughput sequencing technologies. MUMmerGPU demonstrates that even memory-intensive applications can run significantly faster on the relatively low-cost GPU than on the CPU.</p
    • …
    corecore