70 research outputs found

    On local Fourier analysis of multigrid methods for PDEs with jumping and random coefficients

    Get PDF
    In this paper, we propose a novel non-standard Local Fourier Analysis (LFA) variant for accurately predicting the multigrid convergence of problems with random and jumping coefficients. This LFA method is based on a specific basis of the Fourier space rather than the commonly used Fourier modes. To show the utility of this analysis, we consider, as an example, a simple cell-centered multigrid method for solving a steady-state single phase flow problem in a random porous medium. We successfully demonstrate the prediction capability of the proposed LFA using a number of challenging benchmark problems. The information provided by this analysis helps us to estimate a-priori the time needed for solving certain uncertainty quantification problems by means of a multigrid multilevel Monte Carlo method

    On local Fourier analysis of multigrid methods for PDEs with jumping and random coefficients

    Get PDF
    In this paper, we propose a novel nonstandard local Fourier analysis (LFA) variant for accurately predicting the multigrid convergence of problems with random and jumping coefficients. This LFA method is based on a specific basis of the Fourier space rather than the commonly used Fourier modes. To show the utility of this analysis, we consider, as an example, a simple cell-centered multigrid method for solving a steady-state single phase flow problem in a random porous medium. We successfully demonstrate the predictive capability of the proposed LFA using a number of challenging benchmark problems. The information provided by this analysis could be used to estimate a priori the time needed for solving certain uncertainty quantification problems by means of a multigrid multilevel Monte Carlo method

    Multigrid solvers for multipoint flux approximations of the Darcy problem on rough quadrilateral grids

    Get PDF
    In this work, an efficient blackbox-type multigrid method is proposed for solving multipoint flux approximations of the Darcy problem on logically rectangular grids. The approach is based on a cell-centered multigrid algorithm, which combines a piecewise constant interpolation and the restriction operator by Wesseling/Khalil with a line-wise relaxation procedure. A local Fourier analysis is performed for the case of a Cartesian uniform grid. The method shows a robust convergence for different full tensor coefficient problems and several rough quadrilateral grids.Francisco J. Gaspar has received funding from the European Union’s Horizon 2020 Research and Innovation Programme under the Marie Skłodowska–Curie grant agreement no. 705402, POROSOS. The work of Laura Portero is supported by the Spanish project MTM2016-75139-R (AEI/FEDER, UE) and the Young Researchers Programme 2018 from the Public University of Navarre. Andrés Arrarás acknowledges support from the Spanish project PGC2018-099536-A-I00 (MCIU/AEI/FEDER, UE) and the Young Researchers Programme 2018 from the Public University of Navarre. The work of Carmen Rodrigo is supported by the Spanish project PGC2018-099536-A-I00 (MCIU/AEI/FEDER, UE) and the DGA (Grupo de referencia APEDIF, ref. E24_17R)

    A parametric acceleration of multilevel Monte Carlo convergence for nonlinear variably saturated flow

    Get PDF
    We present a multilevel Monte Carlo (MLMC) method for the uncertainty quantification of variably saturated porous media flow that is modeled using the Richards equation. We propose a stochastic extension for the empirical models that are typically employed to close the Richards equations. This is achieved by treating the soil parameters in these models as spatially correlated random fields with appropriately defined marginal distributions. As some of these parameters can only take values in a specific range, non-Gaussian models are utilized. The randomness in these parameters may result in path-wise highly nonlinear systems, so that a robust solver with respect to the random input is required. For this purpose, a solution method based on a combination of the modified Picard iteration and a cell-centered multigrid method for heterogeneous diffusion coefficients is utilized. Moreover, we propose a non-standard MLMC estimator to solve the resulting high-dimensional stochastic Richards equation. The improved efficiency of this multilevel estimator is achieved by parametric continuation that allows us to incorporate simpler nonlinear problems on coarser levels for variance reduction while the target strongly nonlinear problem is solved only on the finest level. Several numerical experiments are presented showing computational savings obtained by the new estimator compared with the original MC estimator

    A parametric acceleration of multilevel Monte Carlo convergence for nonlinear variably saturated flow

    Get PDF
    We present a multilevel Monte Carlo (MLMC) method for the uncertainty quantification of variably saturated porous media flow that are modeled using the Richards’ equation. We propose a stochastic extension for the empirical models that are typically employed to close the Richards’ equations. This is achieved by treating the soil parameters in these models as spatially correlated random fields with appropriately defined marginal distributions. As some of these parameters can only take values in a specific range, non-Gaussian models are utilized. The randomness in these parameters may result in path-wise highly nonlinear systems, so that a robust solver with respect to the random input is required. For this purpose, a solution method based on a combination of the modified Picard iteration and a cell-centered multigrid method for heterogeneous diffusion coefficients is utilized. Moreover, we propose a non-standard MLMC estimator to solve the resulting high-dimensional stochastic Richards’ equation. The improved efficiency of this multilevel estimator is achieved by parametric continuation that allows us to incorporate simpler nonlinear problems on coarser levels for variance reduction while the target strongly nonlinear problem is solved only on the finest level. Several numerical experiments are presented showing computational savings obtained by the new estimator compared to the original MC estimator
    • …
    corecore