1,032 research outputs found

    Discrete Approximations of a Controlled Sweeping Process

    Get PDF
    The paper is devoted to the study of a new class of optimal control problems governed by the classical Moreau sweeping process with the new feature that the polyhe- dral moving set is not fixed while controlled by time-dependent functions. The dynamics of such problems is described by dissipative non-Lipschitzian differential inclusions with state constraints of equality and inequality types. It makes challenging and difficult their anal- ysis and optimization. In this paper we establish some existence results for the sweeping process under consideration and develop the method of discrete approximations that allows us to strongly approximate, in the W^{1,2} topology, optimal solutions of the continuous-type sweeping process by their discrete counterparts

    The Steiner tree problem revisited through rectifiable G-currents

    Full text link
    The Steiner tree problem can be stated in terms of finding a connected set of minimal length containing a given set of finitely many points. We show how to formulate it as a mass-minimization problem for 11-dimensional currents with coefficients in a suitable normed group. The representation used for these currents allows to state a calibration principle for this problem. We also exhibit calibrations in some examples

    Applying Metric Regularity to Compute a Condition Measure of a Smoothing Algorithm for Matrix Games

    Full text link
    We develop an approach of variational analysis and generalized differentiation to conditioning issues for two-person zero-sum matrix games. Our major results establish precise relationships between a certain condition measure of the smoothing first-order algorithm proposed by Gilpin et al. [Proceedings of the 23rd AAAI Conference (2008) pp. 75-82] and the exact bound of metric regularity for an associated set-valued mapping. In this way we compute the aforementioned condition measure in terms of the initial matrix game data

    Optimal control of the sweeping process over polyhedral controlled sets

    Get PDF
    The paper addresses a new class of optimal control problems governed by the dissipative and discontinuous differential inclusion of the sweeping/Moreau process while using controls to determine the best shape of moving convex polyhedra in order to optimize the given Bolza-type functional, which depends on control and state variables as well as their velocities. Besides the highly non-Lipschitzian nature of the unbounded differential inclusion of the controlled sweeping process, the optimal control problems under consideration contain intrinsic state constraints of the inequality and equality types. All of this creates serious challenges for deriving necessary optimality conditions. We develop here the method of discrete approximations and combine it with advanced tools of first-order and second-order variational analysis and generalized differentiation. This approach allows us to establish constructive necessary optimality conditions for local minimizers of the controlled sweeping process expressed entirely in terms of the problem data under fairly unrestrictive assumptions. As a by-product of the developed approach, we prove the strong W1,2W^{1,2}-convergence of optimal solutions of discrete approximations to a given local minimizer of the continuous-time system and derive necessary optimality conditions for the discrete counterparts. The established necessary optimality conditions for the sweeping process are illustrated by several examples
    • …
    corecore