1,620 research outputs found

    A Quantitative Study of Pure Parallel Processes

    Full text link
    In this paper, we study the interleaving -- or pure merge -- operator that most often characterizes parallelism in concurrency theory. This operator is a principal cause of the so-called combinatorial explosion that makes very hard - at least from the point of view of computational complexity - the analysis of process behaviours e.g. by model-checking. The originality of our approach is to study this combinatorial explosion phenomenon on average, relying on advanced analytic combinatorics techniques. We study various measures that contribute to a better understanding of the process behaviours represented as plane rooted trees: the number of runs (corresponding to the width of the trees), the expected total size of the trees as well as their overall shape. Two practical outcomes of our quantitative study are also presented: (1) a linear-time algorithm to compute the probability of a concurrent run prefix, and (2) an efficient algorithm for uniform random sampling of concurrent runs. These provide interesting responses to the combinatorial explosion problem

    The Combinatorics of Non-determinism

    Get PDF
    A deep connection exists between the interleaving semantics of concurrent processes and increasingly labelled combinatorial structures. In this paper we further explore this connection by studying the rich combinatorics of partially increasing structures underlying the operator of non-deterministic choice. Following the symbolic method of analytic combinatorics, we study the size of the computation trees induced by typical non-deterministic processes, providing a precise quantitative measure of the so-called "combinatorial explosion" phenomenon. Alternatively, we can see non-deterministic choice as encoding a family of tree-like partial orders. Measuring the (rather large) size of this family on average offers a key witness to the expressiveness of the choice operator. As a practical outcome of our quantitative study, we describe an efficient algorithm for generating computation paths uniformly at random

    Beyond Series-Parallel Concurrent Systems: The Case of Arch Processes

    Get PDF
    In this paper we focus on concurrent processes built on synchronization by means of futures. This concept is an abstraction for processes based on a main execution thread but allowing to delay some computations. The structure of a general concurrent process is a directed acyclic graph (DAG). Since the quantitative study of increasingly labeled DAG (directly related to processes) seems out of reach (this is a #P-complete problem), we restrict ourselves to the study of arch processes, a simplistic model of processes with futures. They are based on two parameters related to their sizes and their numbers of arches. The increasingly labeled structures seems not to be specifiable in the classical sense of Analytic Combinatorics, but we manage to derive a recurrence equation for the enumeration. For this model we first exhibit an exact and an asymptotic formula for the number of runs of a given process. The second main contribution is composed of a uniform random sampler algorithm and an unranking one that allow efficient generation and exhaustive enumeration of the runs of a given arch process
    • 

    corecore