1,791 research outputs found

    On Limitations to the achievable path following performance for linear multivariable plants

    Get PDF
    In this paper, we consider a problem termed “path following”. This differs from the common problem of reference tracking, in that here we can adjust the speed at which we traverse the reference trajectory. We are interested in ascertaining the degree to which we can track a given trajectory, and in characterizing the class of paths for which we can generate an appropriate temporal specification so that the path can be tracked arbitrarily well in an L2 sense.We give various bounds on the achievable performance, as well as tight results in special cases. In addition, we give a numerical procedure based on convex optimization for computing the achievable performance. The results demonstrate that there are situations where arbitrarily good L2 performance may be achieved even though the origin is not in the convex hull of the positive limit set of the path to be followed

    On Limitations to the achievable path following performance for linear multivariable plants

    Get PDF
    In this paper, we consider a problem termed “path following”. This differs from the common problem of reference tracking, in that here we can adjust the speed at which we traverse the reference trajectory. We are interested in ascertaining the degree to which we can track a given trajectory, and in characterizing the class of paths for which we can generate an appropriate temporal specification so that the path can be tracked arbitrarily well in an L2 sense.We give various bounds on the achievable performance, as well as tight results in special cases. In addition, we give a numerical procedure based on convex optimization for computing the achievable performance. The results demonstrate that there are situations where arbitrarily good L2 performance may be achieved even though the origin is not in the convex hull of the positive limit set of the path to be followed

    IMPAC: An Integrated Methodology for Propulsion and Airframe Control

    Get PDF
    The National Aeronautics and Space Administration is actively involved in the development of enabling technologies that will lead towards aircraft with new/enhanced maneuver capabilities such as Short Take-Off Vertical Landing (STOVL) and high angle of attack performance. Because of the high degree of dynamic coupling between the airframe and propulsion systems of these types of aircraft, one key technology is the integration of the flight and propulsion control. The NASA Lewis Research Center approach to developing Integrated Flight Propulsion Control (IFPC) technologies is an in-house research program referred to as IMPAC (Integrated Methodology for Propulsion and Airframe Control). The goals of IMPAC are to develop a viable alternative to the existing integrated control design methodologies that will allow for improved system performance and simplicity of control law synthesis and implementation, and to demonstrate the applicability of the methodology to a supersonic STOVL fighter aircraft. Based on some preliminary control design studies that included evaluation of the existing methodologies, the IFPC design methodology that is emerging at the Lewis Research Center consists of considering the airframe and propulsion system as one integrated system for an initial centralized controller design and then partitioning the centralized controller into separate airframe and propulsion system subcontrollers to ease implementation and to set meaningful design requirements for detailed subsystem control design and evaluation. An overview of IMPAC is provided and detailed discussion of the various important design and evaluation steps in the methodology are included

    Hybrid operator models for digitally implemented control systems

    Get PDF
    A method of analysis for digitally implemented (hybrid) control systems based on conic sector concepts from functional analysis was established. Data sampling is addressed

    Diseño para operabilidad: Una revisión de enfoques y estrategias de solución

    Get PDF
    In the last decades the chemical engineering scientific research community has largely addressed the design-foroperability problem. Such an interest responds to the fact that the operability quality of a process is determined by design, becoming evident the convenience of considering operability issues in early design stages rather than later when the impact of modifications is less effective and more expensive. The necessity of integrating design and operability is dictated by the increasing complexity of the processes as result of progressively stringent economic, quality, safety and environmental constraints. Although the design-for-operability problem concerns to practically every technical discipline, it has achieved a particular identity within the chemical engineering field due to the economic magnitude of the involved processes. The work on design and analysis for operability in chemical engineering is really vast and a complete review in terms of papers is beyond the scope of this contribution. Instead, two major approaches will be addressed and those papers that in our belief had the most significance to the development of the field will be described in some detail.En las últimas décadas, la comunidad científica de ingeniería química ha abordado intensamente el problema de diseño-para-operabilidad. Tal interés responde al hecho de que la calidad operativa de un proceso esta determinada por diseño, resultando evidente la conveniencia de considerar aspectos operativos en las etapas tempranas del diseño y no luego, cuando el impacto de las modificaciones es menos efectivo y más costoso. La necesidad de integrar diseño y operabilidad esta dictada por la creciente complejidad de los procesos como resultado de las cada vez mayores restricciones económicas, de calidad de seguridad y medioambientales. Aunque el problema de diseño para operabilidad concierne a prácticamente toda disciplina, ha adquirido una identidad particular dentro de la ingeniería química debido a la magnitud económica de los procesos involucrados. El trabajo sobre diseño y análisis para operabilidad es realmente vasto y una revisión completa en términos de artículos supera los alcances de este trabajo. En su lugar, se discutirán los dos enfoques principales y aquellos artículos que en nuestra opinión han tenido mayor impacto para el desarrollo de la disciplina serán descriptos con cierto detalle.Fil: Blanco, Anibal Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaFil: Bandoni, Jose Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentin

    Dynamic operability assessment : a mathematical programming approach based on Q-parametrization

    Get PDF
    Bibliography: pages 197-208.The ability of a process plant to guarantee high product quality, in terms of low variability, is emerging as a defining feature when distinguishing between alternative suppliers. The extent to which this can be achieved is termed a plant's dynamic operability and is a function of both the plant design and the control system design. In the limit, however, the closedloop performance is determined by the properties inherent in the plant. This realization of the interrelationship between a plant design and its achievable closed-loop performance has motivated research toward systematic techniques for screening inherently inferior designs. Pioneering research in the early 1980's identified right-half-plane transmission zeros, time delays, input constraints and model uncertainty as factors that limit the achievable closedloop performance of a process. Quantifying the performance-limiting effect of combinations of these factors has proven to be a challenging problem, as reflected in the literature. It is the aim of this thesis to develop a systematic procedure for dynamic operability assessment in the presence of combinations of performance-limiting factors. The approach adopted in this thesis is based on the Q-parametrization of stabilizing linear feedback controllers and involves posing dynamic operability assessment as a mathematical programming problet? In the proposed formulation, a convex objective function, reflecting a measure of closed-loop performance, is optimized over all stable Q, subject. to a set of constraints on the closed-loop behavior, which for many specifications of interest is convex. A discrete-time formulation is chosen so as to allow for the convenient hand.ling of time delays and time-domain constraints. An important feature of the approach is that, due to the convexity, global optimality is guaranteed. Furthermore, the fact that Q parametrizes all stabilizing linear feedback controllers implies that the performance at the optimum represents the best possible performance for any such controller. The results are thus not biased by controller type or tuning, apart from the requirement that the controller be linear

    Relay Feedback and Multivariable Control

    Get PDF
    This doctoral thesis treats three issues in control engineering related to relay feedback and multivariable control systems. Linear systems with relay feedback is the first topic. Such systems are shown to exhibit several interesting behaviors. It is proved that there exist multiple fast relay switches if and only if the sign of the first non-vanishing Markov parameter of the linear system is positive. It is also shown that these fast switches can appear as part of a stable limit cycle. A linear system with pole excess one or two is demonstrated to be particularly interesting. Stability conditions for these cases are derived. It is also discussed how fast relay switches can be approximated by sliding modes. Performance limitations in linear multivariable control systems is the second topic. It is proved that if the top left submatrices of a stable transfer matrix have no right half-plane zeros and a certain high-frequency condition holds, then there exists a diagonal stabilizing feedback that makes a weighted sensitivity function arbitrarily small. Implications on control structure design and sequential loop-closure are given. A novel multivariable laboratory process is also presented. Its linearized dynamics have a transmission zero that can be located anywhere on the real axis by simply adjusting two valves. This process is well suited to illustrate many issues in multivariable control, for example, control design limitations due to right half-plane zeros. The third topic is a combination of relay feedback and multivariable control. Tuning of individual loops in an existing multivariable control system is discussed. It is shown that a specific relay feedback experiment can be used to obtain process information suitable for performance improvement in a loop, without any prior knowledge of the system dynamics. The influence of the loop retuning on the overall closed-loop performance is derived and interpreted in several ways

    Control structure design for dynamic systems:a review

    Get PDF

    Cooperative control theory and integrated flight and propulsion control

    Get PDF
    The major contribution of this research was the exposition of the fact that airframe and engine interactions could be present, and their effects could include loss of stability and performance of the control systems. Also, the significance of two directional, as opposed to one-directional, coupling was identified and explained. A multivariable stability and performance analysis methodology was developed, and applied to several candidate aircraft configurations. In these example evaluations, the significance of these interactions was underscored. Also exposed was the fact that with interactions present along with some integrated control approaches, the engine command/limiting logic (which represents an important nonlinear component of the engine control system) can impact closed-loop airframe/engine system stability. Finally, a brief investigation of control-law synthesis techniques appropriate for the class of systems was pursued, and it was determined that multivariable techniques, including model-following formulations of LQG and/or H infinity methods, showed promise. However, for practical reasons, decentralized control architectures are preferred, which is an architecture incompatible with these synthesis methods. The major contributions of the second phase of the grant was the development of conditions under which no decentralized controller could achieve closed loop system requirements on stability and/or performance. Sought were conditions that depended only on properties of the plant and the requirement, and independent of any particular control law or synthesis approach. Therefore, they could be applied a priori, before synthesis of a candidate control law. Under this grant, such conditions were found regarding stability, and encouraging initial results were obtained regarding performance
    corecore