28,525 research outputs found

    Unsupervised Domain Adaptation with Similarity Learning

    Full text link
    The objective of unsupervised domain adaptation is to leverage features from a labeled source domain and learn a classifier for an unlabeled target domain, with a similar but different data distribution. Most deep learning approaches to domain adaptation consist of two steps: (i) learn features that preserve a low risk on labeled samples (source domain) and (ii) make the features from both domains to be as indistinguishable as possible, so that a classifier trained on the source can also be applied on the target domain. In general, the classifiers in step (i) consist of fully-connected layers applied directly on the indistinguishable features learned in (ii). In this paper, we propose a different way to do the classification, using similarity learning. The proposed method learns a pairwise similarity function in which classification can be performed by computing similarity between prototype representations of each category. The domain-invariant features and the categorical prototype representations are learned jointly and in an end-to-end fashion. At inference time, images from the target domain are compared to the prototypes and the label associated with the one that best matches the image is outputed. The approach is simple, scalable and effective. We show that our model achieves state-of-the-art performance in different unsupervised domain adaptation scenarios

    Stochastic Adversarial Gradient Embedding for Active Domain Adaptation

    Full text link
    Unsupervised Domain Adaptation (UDA) aims to bridge the gap between a source domain, where labelled data are available, and a target domain only represented with unlabelled data. If domain invariant representations have dramatically improved the adaptability of models, to guarantee their good transferability remains a challenging problem. This paper addresses this problem by using active learning to annotate a small budget of target data. Although this setup, called Active Domain Adaptation (ADA), deviates from UDA's standard setup, a wide range of practical applications are faced with this situation. To this purpose, we introduce \textit{Stochastic Adversarial Gradient Embedding} (SAGE), a framework that makes a triple contribution to ADA. First, we select for annotation target samples that are likely to improve the representations' transferability by measuring the variation, before and after annotation, of the transferability loss gradient. Second, we increase sampling diversity by promoting different gradient directions. Third, we introduce a novel training procedure for actively incorporating target samples when learning invariant representations. SAGE is based on solid theoretical ground and validated on various UDA benchmarks against several baselines. Our empirical investigation demonstrates that SAGE takes the best of uncertainty \textit{vs} diversity samplings and improves representations transferability substantially
    • …
    corecore