49,784 research outputs found

    The 2015 Sheffield System for Transcription of Multi–Genre Broadcast Media

    Get PDF
    We describe the University of Sheffield system for participation in the 2015 Multi-Genre Broadcast (MGB) challenge task of transcribing multi-genre broadcast shows. Transcription was one of four tasks proposed in the MGB challenge, with the aim of advancing the state of the art of automatic speech recognition, speaker diarisation and automatic alignment of subtitles for broadcast media. Four topics are investigated in this work: Data selection techniques for training with unreliable data, automatic speech segmentation of broadcast media shows, acoustic modelling and adaptation in highly variable environments, and language modelling of multi-genre shows. The final system operates in multiple passes, using an initial unadapted decoding stage to refine segmentation, followed by three adapted passes: a hybrid DNN pass with input features normalised by speaker-based cepstral normalisation, another hybrid stage with input features normalised by speaker feature-MLLR transformations, and finally a bottleneck-based tandem stage with noise and speaker factorisation. The combination of these three system outputs provides a final error rate of 27.5% on the official development set, consisting of 47 multi-genre shows

    Advances in unlimited-vocabulary speech recognition for morphologically rich languages

    Get PDF
    Automatic speech recognition systems are devices or computer programs that convert human speech into text or make actions based on what is said to the system. Typical applications include dictation, automatic transcription of large audio or video databases, speech-controlled user interfaces, and automated telephone services, for example. If the recognition system is not limited to a certain topic and vocabulary, covering the words in the target languages as well as possible while maintaining a high recognition accuracy becomes an issue. The conventional way to model the target language, especially in English recognition systems, is to limit the recognition to the most common words of the language. A vocabulary of 60 000 words is usually enough to cover the language adequately for arbitrary topics. On the other hand, in morphologically rich languages, such as Finnish, Estonian and Turkish, long words can be formed by inflecting and compounding, which makes it difficult to cover the language adequately by vocabulary-based approaches. This thesis deals with methods that can be used to build efficient speech recognition systems for morphologically rich languages. Before training the statistical n-gram language models on a large text corpus, the words in the corpus are automatically segmented into smaller fragments, referred to as morphs. The morphs are then used as modelling units of the n-gram models instead of whole words. This makes it possible to train the model on the whole text corpus without limiting the vocabulary and enables the model to create even unseen words by joining morphs together. Since the segmentation algorithm is unsupervised and data-driven, it can be readily used for many languages. Speech recognition experiments are made on various Finnish recognition tasks and some of the experiments are also repeated on an Estonian task. It is shown that the morph-based language models reduce recognition errors when compared to word-based models. It seems to be important, however, that the n-gram models are allowed to use long morph contexts, especially if the morphs used by the model are short. This can be achieved by using growing and pruning algorithms to train variable-length n-gram models. The thesis also presents data structures that can be used for representing the variable-length n-gram models efficiently in recognition systems. By analysing the recognition errors made by Finnish recognition systems it is found out that speaker adaptive training and discriminative training methods help to reduce errors in different situations. The errors are also analysed according to word frequencies and manually defined error classes

    Representation Analysis Methods to Model Context for Speech Technology

    Get PDF
    Speech technology has developed to levels equivalent with human parity through the use of deep neural networks. However, it is unclear how the learned dependencies within these networks can be attributed to metrics such as recognition performance. This research focuses on strategies to interpret and exploit these learned context dependencies to improve speech recognition models. Context dependency analysis had not yet been explored for speech recognition networks. In order to highlight and observe dependent representations within speech recognition models, a novel analysis framework is proposed. This analysis framework uses statistical correlation indexes to compute the coefficiency between neural representations. By comparing the coefficiency of neural representations between models using different approaches, it is possible to observe specific context dependencies within network layers. By providing insights on context dependencies it is then possible to adapt modelling approaches to become more computationally efficient and improve recognition performance. Here the performance of End-to-End speech recognition models are analysed, providing insights on the acoustic and language modelling context dependencies. The modelling approach for a speaker recognition task is adapted to exploit acoustic context dependencies and reach comparable performance with the state-of-the-art methods, reaching 2.89% equal error rate using the Voxceleb1 training and test sets with 50% of the parameters. Furthermore, empirical analysis of the role of acoustic context for speech emotion recognition modelling revealed that emotion cues are presented as a distributed event. These analyses and results for speech recognition applications aim to provide objective direction for future development of automatic speech recognition systems

    Multilingual statistical text analysis, Zipf's law and Hungarian speech generation

    Get PDF
    The practical challenge of creating a Hungarian e-mail reader has initiated our work on statistical text analysis. The starting point was statistical analysis for automatic discrimination of the language of texts. Later it was extended to automatic re-generation of diacritic signs and more detailed language structure analysis. A parallel study of three different languages-Hungarian, German and English-using text corpora of a similar size gives a possibility for the exploration of both similarities and differences. Corpora of publicly available Internet sources were used. The corpus size was the same (approximately 20 Mbytes, 2.5-3.5 million word forms) for all languages. Besides traditional corpus coverage, word length and occurrence statistics, some new features about prosodic boundaries (sentence initial and final positions, preceding and following a comma) were also computed. Among others, it was found that the coverage of corpora by the most frequent words follows a parallel logarithmic rule for all languages in the 40-85% coverage range, known as Zipf's law in linguistics. The functions are much nearer for English and German than for Hungarian. Further conclusions are also drawn. The language detection and diacritic regeneration applications are discussed in detail with implications on Hungarian speech generation. Diverse further application domains, such as predictive text input, word hyphenation, language modelling in speech recognition, corpus-based speech synthesis, etc. are also foreseen
    corecore