13,465 research outputs found

    Convex Global 3D Registration with Lagrangian Duality

    Get PDF
    The registration of 3D models by a Euclidean transformation is a fundamental task at the core of many application in computer vision. This problem is non-convex due to the presence of rotational constraints, making traditional local optimization methods prone to getting stuck in local minima. This paper addresses finding the globally optimal transformation in various 3D registration problems by a unified formulation that integrates common geometric registration modalities (namely point-to-point, point-to-line and point-to-plane). This formulation renders the optimization problem independent of both the number and nature of the correspondences. The main novelty of our proposal is the introduction of a strengthened Lagrangian dual relaxation for this problem, which surpasses previous similar approaches [32] in effectiveness. In fact, even though with no theoretical guarantees, exhaustive empirical evaluation in both synthetic and real experiments always resulted on a tight relaxation that allowed to recover a guaranteed globally optimal solution by exploiting duality theory. Thus, our approach allows for effectively solving the 3D registration with global optimality guarantees while running at a fraction of the time for the state-of-the-art alternative [34], based on a more computationally intensive Branch and Bound method.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    A Newton-bracketing method for a simple conic optimization problem

    Full text link
    For the Lagrangian-DNN relaxation of quadratic optimization problems (QOPs), we propose a Newton-bracketing method to improve the performance of the bisection-projection method implemented in BBCPOP [to appear in ACM Tran. Softw., 2019]. The relaxation problem is converted into the problem of finding the largest zero yy^* of a continuously differentiable (except at yy^*) convex function g:RRg : \mathbb{R} \rightarrow \mathbb{R} such that g(y)=0g(y) = 0 if yyy \leq y^* and g(y)>0g(y) > 0 otherwise. In theory, the method generates lower and upper bounds of yy^* both converging to yy^*. Their convergence is quadratic if the right derivative of gg at yy^* is positive. Accurate computation of g(y)g'(y) is necessary for the robustness of the method, but it is difficult to achieve in practice. As an alternative, we present a secant-bracketing method. We demonstrate that the method improves the quality of the lower bounds obtained by BBCPOP and SDPNAL+ for binary QOP instances from BIQMAC. Moreover, new lower bounds for the unknown optimal values of large scale QAP instances from QAPLIB are reported.Comment: 19 pages, 2 figure

    On the local stability of semidefinite relaxations

    Full text link
    We consider a parametric family of quadratically constrained quadratic programs (QCQP) and their associated semidefinite programming (SDP) relaxations. Given a nominal value of the parameter at which the SDP relaxation is exact, we study conditions (and quantitative bounds) under which the relaxation will continue to be exact as the parameter moves in a neighborhood around the nominal value. Our framework captures a wide array of statistical estimation problems including tensor principal component analysis, rotation synchronization, orthogonal Procrustes, camera triangulation and resectioning, essential matrix estimation, system identification, and approximate GCD. Our results can also be used to analyze the stability of SOS relaxations of general polynomial optimization problems.Comment: 23 pages, 3 figure
    corecore