3,465 research outputs found

    Real-Time Motion Planning of Legged Robots: A Model Predictive Control Approach

    Full text link
    We introduce a real-time, constrained, nonlinear Model Predictive Control for the motion planning of legged robots. The proposed approach uses a constrained optimal control algorithm known as SLQ. We improve the efficiency of this algorithm by introducing a multi-processing scheme for estimating value function in its backward pass. This pass has been often calculated as a single process. This parallel SLQ algorithm can optimize longer time horizons without proportional increase in its computation time. Thus, our MPC algorithm can generate optimized trajectories for the next few phases of the motion within only a few milliseconds. This outperforms the state of the art by at least one order of magnitude. The performance of the approach is validated on a quadruped robot for generating dynamic gaits such as trotting.Comment: 8 page

    Optimal control of discrete-time switched linear systems via continuous parameterization

    Full text link
    The paper presents a novel method for designing an optimal controller for discrete-time switched linear systems. The problem is formulated as one of computing the discrete mode sequence and the continuous input sequence that jointly minimize a quadratic performance index. State-of-art methods for solving such a control problem suffer in general from a high computational requirement due to the fact that an exponential number of switching sequences must be explored. The method of this paper addresses the challenge of the switching law design by introducing auxiliary continuous input variables and then solving a non-smooth block-sparsity inducing optimization problem.Comment: 6 pages, 2 figures, 2 tables; To appear in the Proceedings of IFAC World Congress, 201

    Piecewise Constant Policy Approximations to Hamilton-Jacobi-Bellman Equations

    Full text link
    An advantageous feature of piecewise constant policy timestepping for Hamilton-Jacobi-Bellman (HJB) equations is that different linear approximation schemes, and indeed different meshes, can be used for the resulting linear equations for different control parameters. Standard convergence analysis suggests that monotone (i.e., linear) interpolation must be used to transfer data between meshes. Using the equivalence to a switching system and an adaptation of the usual arguments based on consistency, stability and monotonicity, we show that if limited, potentially higher order interpolation is used for the mesh transfer, convergence is guaranteed. We provide numerical tests for the mean-variance optimal investment problem and the uncertain volatility option pricing model, and compare the results to published test cases

    A cascade MPC control structure for PMSM with speed ripple minimization

    No full text
    This paper addresses the problem of reducing the impact of periodic disturbances arising from the current sensor offset error on the speed control of a PMSM. The new results are based on a cascade model predictive control scheme with embedded disturbance model, where the per unit model is utilized to improve the numerical condition of the scheme. Results from an experimental application are given to support the design

    Robust normalization and guaranteed cost control for a class of uncertain singular Markovian jump systems via hybrid impulsive control

    Get PDF
    This paper investigates the problem of robust normalization and guaranteed cost control for a class of uncertain singular Markovian jump systems. The uncertainties exhibit in both system matrices and transition rate matrix of the Markovian chain. A new impulsive and proportional-derivative control strategy is presented, where the derivative gain is to make the closed-loop system of the singular plant to be a normal one, and the impulsive control part is to make the value of the Lyapunov function does not increase at each time instant of the Markovian switching. A linearization approach via congruence transformations is proposed to solve the controller design problem. The cost function is minimized via solving an optimization problem under the designed control scheme. Finally, three examples (two numerical examples and an RC pulse divider circuit example) are provided to illustrate the effectiveness and applicability of the proposed methods

    A path planning and path-following control framework for a general 2-trailer with a car-like tractor

    Full text link
    Maneuvering a general 2-trailer with a car-like tractor in backward motion is a task that requires significant skill to master and is unarguably one of the most complicated tasks a truck driver has to perform. This paper presents a path planning and path-following control solution that can be used to automatically plan and execute difficult parking and obstacle avoidance maneuvers by combining backward and forward motion. A lattice-based path planning framework is developed in order to generate kinematically feasible and collision-free paths and a path-following controller is designed to stabilize the lateral and angular path-following error states during path execution. To estimate the vehicle state needed for control, a nonlinear observer is developed which only utilizes information from sensors that are mounted on the car-like tractor, making the system independent of additional trailer sensors. The proposed path planning and path-following control framework is implemented on a full-scale test vehicle and results from simulations and real-world experiments are presented.Comment: Preprin
    • …
    corecore