4,061 research outputs found

    On non-recursive trade-offs between finite-turn pushdown automata

    Get PDF
    It is shown that between one-turn pushdown automata (1-turn PDAs) and deterministic finite automata (DFAs) there will be savings concerning the size of description not bounded by any recursive function, so-called non-recursive tradeoffs. Considering the number of turns of the stack height as a consumable resource of PDAs, we can show the existence of non-recursive trade-offs between PDAs performing k+ 1 turns and k turns for k >= 1. Furthermore, non-recursive trade-offs are shown between arbitrary PDAs and PDAs which perform only a finite number of turns. Finally, several decidability questions are shown to be undecidable and not semidecidable

    Controlled Rewriting Using Productions and Reductions

    Get PDF
    We investigate context-free grammars the rules of which can be used in a productive and in a reductive fashion, while the application of these rules is controlled by a regular language. We distinguish several modes of derivation for this kind of grammar. The resulting language families (properly) extend the family of context-free languages. We establish some closure properties of these language families and some grammatical transformations which yield a few normal forms for this type of grammar. Finally, we consider some special cases (viz. the context-free grammar is linear or left-linear), and generalizations, in particular, the use of arbitrary rather than regular control languages

    Probabilistic Parsing Strategies

    Full text link
    We present new results on the relation between purely symbolic context-free parsing strategies and their probabilistic counter-parts. Such parsing strategies are seen as constructions of push-down devices from grammars. We show that preservation of probability distribution is possible under two conditions, viz. the correct-prefix property and the property of strong predictiveness. These results generalize existing results in the literature that were obtained by considering parsing strategies in isolation. From our general results we also derive negative results on so-called generalized LR parsing.Comment: 36 pages, 1 figur

    Simple chain grammars and languages

    Get PDF
    A subclass of the LR(0)-grammars, the class of simple chain grammars is introduced. Although there exist simple chain grammars which are not LL(k) for any k>0, this new class of grammars is very closely related to the LL(1) and simple LL(1) grammars. In fact it can be shown that every simple chain grammar has an equivalent simple LL(1) grammar. Cover properties for simple chain grammars are investigated and a deterministic pushdown transducer which acts as a right parser for simple chain grammars is presented

    Formal Languages in Dynamical Systems

    Get PDF
    We treat here the interrelation between formal languages and those dynamical systems that can be described by cellular automata (CA). There is a well-known injective map which identifies any CA-invariant subshift with a central formal language. However, in the special case of a symbolic dynamics, i.e. where the CA is just the shift map, one gets a stronger result: the identification map can be extended to a functor between the categories of symbolic dynamics and formal languages. This functor additionally maps topological conjugacies between subshifts to empty-string-limited generalized sequential machines between languages. If the periodic points form a dense set, a case which arises in a commonly used notion of chaotic dynamics, then an even more natural map to assign a formal language to a subshift is offered. This map extends to a functor, too. The Chomsky hierarchy measuring the complexity of formal languages can be transferred via either of these functors from formal languages to symbolic dynamics and proves to be a conjugacy invariant there. In this way it acquires a dynamical meaning. After reviewing some results of the complexity of CA-invariant subshifts, special attention is given to a new kind of invariant subshift: the trapped set, which originates from the theory of chaotic scattering and for which one can study complexity transitions.Comment: 23 pages, LaTe

    Controlled Bidirectional Grammars

    Get PDF
    We investigate context-free grammars the rules of which can be used in a productive and in a reductive fashion, while the application of these rules is controlled by a regular language. We distinguish several modes of derivation for this kind of grammar. The resulting language families (properly) extend the family of context-free languages. We establish some closure properties of these language families and some grammatical transformations which yield a few normal forms for this type of grammar. Finally, we consider some special cases (viz. the context-free grammar is linear or left-linear), and generalizations, in particular, the use of arbitrary rather than regular control languages

    Extended macro grammars and stack controlled machines

    Get PDF
    K-extended basic macro grammars are introduced, where K is any class of languages. The class B(K) of languages generated by such grammars is investigated, together with the class LB(K) of languages generated by the corresponding linear basic grammars. For any full semi-AFL K, B(K) is a full AFL closed under iterated LB(K)-substitution, but not necessarily under substitution. For any machine type D, the stack controlled machine type corresponding to D is introduced, denoted S(D), and the checking-stack controlled machine type CS(D). The data structure of this machine is a stack which controls a pushdown of data structures from D. If D accepts K, then S(D) accepts B(K) and CS(D) accepts LB(K). Thus the classes B(K) are characterized by stack controlled machines and the classes LB(K), i.e., the full hyper-AFLs, by checking-stack controlled machines. A full basic-AFL is a full AFL K such that B(K)C K. Every full basic-AFL is a full hyper-AFL, but not vice versa. The class of OI macro languages (i.e., indexed languages, i.e., nested stack automaton languages) is a full basic-AFL, properly containing the smallest full basic-AFL. The latter is generated by the ultrabasic macro grammars and accepted by the nested stack automata with bounded depth of nesting (and properly contains the stack languages, the ETOL languages, i.e., the smallest full hyper-AFL, and the basic macro languages). The full basic-AFLs are characterized by bounded nested stack controlled machines
    corecore