63 research outputs found

    The contribution of A.V. Kuznetsov to the theory of modal systems and structures

    Get PDF
    We will outline the contributions of A.V. Kuznetsov to modal logic. In his research he focused mainly on semantic, i.e. algebraic, issues and lattices of extensions of particular modal logics, though his proof of the Full Conservativeness Theorem for the proof-intuitionistic logic KM (Theorem 17 below) is a gem of proof-theoretic art

    Guarded Cubical Type Theory: Path Equality for Guarded Recursion

    Get PDF
    This paper improves the treatment of equality in guarded dependent type theory (GDTT), by combining it with cubical type theory (CTT). GDTT is an extensional type theory with guarded recursive types, which are useful for building models of program logics, and for programming and reasoning with coinductive types. We wish to implement GDTT with decidable type-checking, while still supporting non-trivial equality proofs that reason about the extensions of guarded recursive constructions. CTT is a variation of Martin-L\"of type theory in which the identity type is replaced by abstract paths between terms. CTT provides a computational interpretation of functional extensionality, is conjectured to have decidable type checking, and has an implemented type-checker. Our new type theory, called guarded cubical type theory, provides a computational interpretation of extensionality for guarded recursive types. This further expands the foundations of CTT as a basis for formalisation in mathematics and computer science. We present examples to demonstrate the expressivity of our type theory, all of which have been checked using a prototype type-checker implementation, and present semantics in a presheaf category.Comment: 17 pages, to be published in proceedings of CSL 201

    Coinduction in Flow: The Later Modality in Fibrations

    Get PDF
    This paper provides a construction on fibrations that gives access to the so-called later modality, which allows for a controlled form of recursion in coinductive proofs and programs. The construction is essentially a generalisation of the topos of trees from the codomain fibration over sets to arbitrary fibrations. As a result, we obtain a framework that allows the addition of a recursion principle for coinduction to rather arbitrary logics and programming languages. The main interest of using recursion is that it allows one to write proofs and programs in a goal-oriented fashion. This enables easily understandable coinductive proofs and programs, and fosters automatic proof search. Part of the framework are also various results that enable a wide range of applications: transportation of (co)limits, exponentials, fibred adjunctions and first-order connectives from the initial fibration to the one constructed through the framework. This means that the framework extends any first-order logic with the later modality. Moreover, we obtain soundness and completeness results, and can use up-to techniques as proof rules. Since the construction works for a wide variety of fibrations, we will be able to use the recursion offered by the later modality in various context. For instance, we will show how recursive proofs can be obtained for arbitrary (syntactic) first-order logics, for coinductive set-predicates, and for the probabilistic modal mu-calculus. Finally, we use the same construction to obtain a novel language for probabilistic productive coinductive programming. These examples demonstrate the flexibility of the framework and its accompanying results

    Intuitionistic G\"odel-L\"ob logic, \`a la Simpson: labelled systems and birelational semantics

    Full text link
    We derive an intuitionistic version of G\"odel-L\"ob modal logic (GL\sf{GL}) in the style of Simpson, via proof theoretic techniques. We recover a labelled system, â„“IGL\sf{\ell IGL}, by restricting a non-wellfounded labelled system for GL\sf{GL} to have only one formula on the right. The latter is obtained using techniques from cyclic proof theory, sidestepping the barrier that GL\sf{GL}'s usual frame condition (converse well-foundedness) is not first-order definable. While existing intuitionistic versions of GL\sf{GL} are typically defined over only the box (and not the diamond), our presentation includes both modalities. Our main result is that â„“IGL\sf{\ell IGL} coincides with a corresponding semantic condition in birelational semantics: the composition of the modal relation and the intuitionistic relation is conversely well-founded. We call the resulting logic IGL\sf{IGL}. While the soundness direction is proved using standard ideas, the completeness direction is more complex and necessitates a detour through several intermediate characterisations of IGL\sf{IGL}.Comment: 25 pages including 8 pages appendix, 4 figure

    Negative Translations and Normal Modality

    Get PDF

    Realising Intensional S4 and GL Modalities

    Get PDF

    Editorial Board

    Get PDF

    Editorial Board

    Get PDF

    Strong Types for Direct Logic

    Get PDF
    This article follows on the introductory article “Direct Logic for Intelligent Applications” [Hewitt 2017a]. Strong Types enable new mathematical theorems to be proved including the Formal Consistency of Mathematics. Also, Strong Types are extremely important in Direct Logic because they block all known paradoxes[Cantini and Bruni 2017]. Blocking known paradoxes makes Direct Logic safer for use in Intelligent Applications by preventing security holes. Inconsistency Robustness is performance of information systems with pervasively inconsistent information. Inconsistency Robustness of the community of professional mathematicians is their performance repeatedly repairing contradictions over the centuries. In the Inconsistency Robustness paradigm, deriving contradictions has been a progressive development and not “game stoppers.” Contradictions can be helpful instead of being something to be “swept under the rug” by denying their existence, which has been repeatedly attempted by authoritarian theoreticians (beginning with some Pythagoreans). Such denial has delayed mathematical development. This article reports how considerations of Inconsistency Robustness have recently influenced the foundations of mathematics for Computer Science continuing a tradition developing the sociological basis for foundations. Mathematics here means the common foundation of all classical mathematical theories from Euclid to the mathematics used to prove Fermat's Last [McLarty 2010]. Direct Logic provides categorical axiomatizations of the Natural Numbers, Real Numbers, Ordinal Numbers, Set Theory, and the Lambda Calculus meaning that up a unique isomorphism there is only one model that satisfies the respective axioms. Good evidence for the consistency Classical Direct Logic derives from how it blocks the known paradoxes of classical mathematics. Humans have spent millennia devising paradoxes for classical mathematics. Having a powerful system like Direct Logic is important in computer science because computers must be able to formalize all logical inferences (including inferences about their own inference processes) without requiring recourse to human intervention. Any inconsistency in Classical Direct Logic would be a potential security hole because it could be used to cause computer systems to adopt invalid conclusions. After [Church 1934], logicians faced the following dilemma: • 1st order theories cannot be powerful lest they fall into inconsistency because of Church’s Paradox. • 2nd order theories contravene the philosophical doctrine that theorems must be computationally enumerable. The above issues can be addressed by requiring Mathematics to be strongly typed using so that: • Mathematics self proves that it is “open” in the sense that theorems are not computationally enumerable. • Mathematics self proves that it is formally consistent. • Strong mathematical theories for Natural Numbers, Ordinals, Set Theory, the Lambda Calculus, Actors, etc. are inferentially decidable, meaning that every true proposition is provable and every proposition is either provable or disprovable. Furthermore, theorems of these theories are not enumerable by a provably total procedure
    • …
    corecore