2 research outputs found

    Intuitionistic completeness for first order classical logic

    Get PDF
    In the past sixty years or so, a real forest of intuitionistic models for classical theories has grown. In this paper we will compare intuitionistic models of first order classical theories according to relevant issues, like completeness (w.r.t. first order classical provability), consistency, and relationship between a connective and its interpretation in a model. We briefly consider also intuitionistic models for classical ω-logic. All results included here, but a part of the proposition (a) below, are new. This work is, ideally, a continuation of a paper by McCarty, who considered intuitionistic completeness mostly for first order intuitionistic logi

    Analysis of methods for extraction of programs from non-constructive proofs

    Get PDF
    The present thesis compares two computational interpretations of non-constructive proofs: refined A-translation and Gödel's functional "Dialectica" interpretation. The behaviour of the extraction methods is evaluated in the light of several case studies, where the resulting programs are analysed and compared. It is argued that the two interpretations correspond to specific backtracking implementations and that programs obtained via the refined A-translation tend to be simpler, faster and more readable than programs obtained via Gödel's interpretation. Three layers of optimisation are suggested in order to produce faster and more readable programs. First, it is shown that syntactic repetition of subterms can be reduced by using let-constructions instead of meta substitutions abd thus obtaining a near linear size bound of extracted terms. The second improvement allows declaring syntactically computational parts of the proof as irrelevant and that this can be used to remove redundant parameters, possibly improving the efficiency of the program. Finally, a special case of induction is identified, for which a more efficient recursive extracted term can be defined. It is shown the outcome of case distinctions can be memoised, which can result in exponential improvement of the average time complexity of the extracted program
    corecore