361 research outputs found

    On Krawtchouk Transforms

    Full text link
    Krawtchouk polynomials appear in a variety of contexts, most notably as orthogonal polynomials and in coding theory via the Krawtchouk transform. We present an operator calculus formulation of the Krawtchouk transform that is suitable for computer implementation. A positivity result for the Krawtchouk transform is shown. Then our approach is compared with the use of the Krawtchouk transform in coding theory where it appears in MacWilliams' and Delsarte's theorems on weight enumerators. We conclude with a construction of Krawtchouk polynomials in an arbitrary finite number of variables, orthogonal with respect to the multinomial distribution.Comment: 13 pages, presented at 10th International Conference on Artificial Intelligence and Symbolic Computation, AISC 2010, Paris, France, 5-6 July 201

    Time-frequency transforms of white noises and Gaussian analytic functions

    Get PDF
    A family of Gaussian analytic functions (GAFs) has recently been linked to the Gabor transform of white Gaussian noise [Bardenet et al., 2017]. This answered pioneering work by Flandrin [2015], who observed that the zeros of the Gabor transform of white noise had a very regular distribution and proposed filtering algorithms based on the zeros of a spectrogram. The mathematical link with GAFs provides a wealth of probabilistic results to inform the design of such signal processing procedures. In this paper, we study in a systematic way the link between GAFs and a class of time-frequency transforms of Gaussian white noises on Hilbert spaces of signals. Our main observation is a conceptual correspondence between pairs (transform, GAF) and generating functions for classical orthogonal polynomials. This correspondence covers some classical time-frequency transforms, such as the Gabor transform and the Daubechies-Paul analytic wavelet transform. It also unveils new windowed discrete Fourier transforms, which map white noises to fundamental GAFs. All these transforms may thus be of interest to the research program `filtering with zeros'. We also identify the GAF whose zeros are the extrema of the Gabor transform of the white noise and derive their first intensity. Moreover, we discuss important subtleties in defining a white noise and its transform on infinite dimensional Hilbert spaces. Finally, we provide quantitative estimates concerning the finite-dimensional approximations of these white noises, which is of practical interest when it comes to implementing signal processing algorithms based on GAFs.Comment: to appear in Applied and Computational Harmonic Analysi

    A finite oscillator model related to sl(2|1)

    Get PDF
    We investigate a new model for the finite one-dimensional quantum oscillator based upon the Lie superalgebra sl(2|1). In this setting, it is natural to present the position and momentum operators of the oscillator as odd elements of the Lie superalgebra. The model involves a parameter p (0<p<1) and an integer representation label j. In the (2j+1)-dimensional representations W_j of sl(2|1), the Hamiltonian has the usual equidistant spectrum. The spectrum of the position operator is discrete and turns out to be of the form ±k\pm\sqrt{k}, where k=0,1,...,j. We construct the discrete position wave functions, which are given in terms of certain Krawtchouk polynomials. These wave functions have appealing properties, as can already be seen from their plots. The model is sufficiently simple, in the sense that the corresponding discrete Fourier transform (relating position wave functions to momentum wave functions) can be constructed explicitly

    Fourier-Reflexive Partitions and MacWilliams Identities for Additive Codes

    Full text link
    A partition of a finite abelian group gives rise to a dual partition on the character group via the Fourier transform. Properties of the dual partitions are investigated and a convenient test is given for the case that the bidual partition coincides the primal partition. Such partitions permit MacWilliams identities for the partition enumerators of additive codes. It is shown that dualization commutes with taking products and symmetrized products of partitions on cartesian powers of the given group. After translating the results to Frobenius rings, which are identified with their character module, the approach is applied to partitions that arise from poset structures

    The su(2)α Hahn oscillator and a discrete Fourier-Hahn transform

    Get PDF
    We define the quadratic algebra su(2)(alpha) which is a one-parameter deformation of the Lie algebra su(2) extended by a parity operator. The odd-dimensional representations of su(2) (with representation label j, a positive integer) can be extended to representations of su(2)(alpha). We investigate a model of the finite one-dimensional harmonic oscillator based upon this algebra su(2)(alpha). It turns out that in this model the spectrum of the position and momentum operator can be computed explicitly, and that the corresponding (discrete) wavefunctions can be determined in terms of Hahn polynomials. The operation mapping position wavefunctions into momentum wavefunctions is studied, and this so-called discrete Fourier-Hahn transform is computed explicitly. The matrix of this discrete Fourier-Hahn transform has many interesting properties, similar to those of the traditional discrete Fourier transform
    corecore