397 research outputs found

    Dynamic mode decomposition in vector-valued reproducing kernel Hilbert spaces for extracting dynamical structure among observables

    Full text link
    Understanding nonlinear dynamical systems (NLDSs) is challenging in a variety of engineering and scientific fields. Dynamic mode decomposition (DMD), which is a numerical algorithm for the spectral analysis of Koopman operators, has been attracting attention as a way of obtaining global modal descriptions of NLDSs without requiring explicit prior knowledge. However, since existing DMD algorithms are in principle formulated based on the concatenation of scalar observables, it is not directly applicable to data with dependent structures among observables, which take, for example, the form of a sequence of graphs. In this paper, we formulate Koopman spectral analysis for NLDSs with structures among observables and propose an estimation algorithm for this problem. This method can extract and visualize the underlying low-dimensional global dynamics of NLDSs with structures among observables from data, which can be useful in understanding the underlying dynamics of such NLDSs. To this end, we first formulate the problem of estimating spectra of the Koopman operator defined in vector-valued reproducing kernel Hilbert spaces, and then develop an estimation procedure for this problem by reformulating tensor-based DMD. As a special case of our method, we propose the method named as Graph DMD, which is a numerical algorithm for Koopman spectral analysis of graph dynamical systems, using a sequence of adjacency matrices. We investigate the empirical performance of our method by using synthetic and real-world data.Comment: 34 pages with 4 figures, Published in Neural Networks, 201

    Tensor-based dynamic mode decomposition

    Full text link
    Dynamic mode decomposition (DMD) is a recently developed tool for the analysis of the behavior of complex dynamical systems. In this paper, we will propose an extension of DMD that exploits low-rank tensor decompositions of potentially high-dimensional data sets to compute the corresponding DMD modes and eigenvalues. The goal is to reduce the computational complexity and also the amount of memory required to store the data in order to mitigate the curse of dimensionality. The efficiency of these tensor-based methods will be illustrated with the aid of several different fluid dynamics problems such as the von K\'arm\'an vortex street and the simulation of two merging vortices

    Applied Koopman Operator Theory for Power Systems Technology

    Get PDF
    Koopman operator is a composition operator defined for a dynamical system described by nonlinear differential or difference equation. Although the original system is nonlinear and evolves on a finite-dimensional state space, the Koopman operator itself is linear but infinite-dimensional (evolves on a function space). This linear operator captures the full information of the dynamics described by the original nonlinear system. In particular, spectral properties of the Koopman operator play a crucial role in analyzing the original system. In the first part of this paper, we review the so-called Koopman operator theory for nonlinear dynamical systems, with emphasis on modal decomposition and computation that are direct to wide applications. Then, in the second part, we present a series of applications of the Koopman operator theory to power systems technology. The applications are established as data-centric methods, namely, how to use massive quantities of data obtained numerically and experimentally, through spectral analysis of the Koopman operator: coherency identification of swings in coupled synchronous generators, precursor diagnostic of instabilities in the coupled swing dynamics, and stability assessment of power systems without any use of mathematical models. Future problems of this research direction are identified in the last concluding part of this paper.Comment: 31 pages, 11 figure
    corecore