554 research outputs found

    AGM 25 years: twenty-five years of research in belief change

    Get PDF
    The 1985 paper by Carlos Alchourrón (1931–1996), Peter Gärdenfors, and David Makinson (AGM), “On the Logic of Theory Change: Partial Meet Contraction and Revision Functions” was the starting-point of a large and rapidly growing literature that employs formal models in the investigation of changes in belief states and databases. In this review, the first twenty five years of this development are summarized. The topics covered include equivalent characterizations of AGM operations, extended representations of the belief states, change operators not included in the original framework, iterated change, applications of the model, its connections with other formal frameworks, computatibility of AGM operations, and criticism of the model.info:eu-repo/semantics/publishedVersio

    On Strengthening the Logic of Iterated Belief Revision: Proper Ordinal Interval Operators

    Get PDF
    Darwiche and Pearl’s seminal 1997 article outlined a number of baseline principles for a logic of iterated belief revision. These principles, the DP postulates, have been supplemented in a number of alternative ways. Most suggestions have resulted in a form of ‘reductionism’ that identifies belief states with orderings of worlds. However, this position has recently been criticised as being unacceptably strong. Other proposals, such as the popular principle (P), aka ‘Independence’, characteristic of ‘admissible’ operators, remain commendably more modest. In this paper, we supplement the DP postulates and (P) with a number of novel conditions. While the DP postulates constrain the relation between a prior and a posterior conditional belief set, our new principles notably govern the relation between two posterior conditional belief sets obtained from a common prior by different revisions. We show that operators from the resulting family, which subsumes both lexicographic and restrained revision, can be represented as relating belief states associated with a ‘proper ordinal interval’ (POI) assignment, a structure more fine-grained than a simple ordering of worlds. We close the paper by noting that these operators satisfy iterated versions of many AGM era postulates, including Superexpansion, that are not sound for admissible operators in general

    Decrement Operators in Belief Change

    Full text link
    While research on iterated revision is predominant in the field of iterated belief change, the class of iterated contraction operators received more attention in recent years. In this article, we examine a non-prioritized generalisation of iterated contraction. In particular, the class of weak decrement operators is introduced, which are operators that by multiple steps achieve the same as a contraction. Inspired by Darwiche and Pearl's work on iterated revision the subclass of decrement operators is defined. For both, decrement and weak decrement operators, postulates are presented and for each of them a representation theorem in the framework of total preorders is given. Furthermore, we present two sub-types of decrement operators

    Lack of Finite Characterizations for the Distance-based Revision

    Full text link
    Lehmann, Magidor, and Schlechta developed an approach to belief revision based on distances between any two valuations. Suppose we are given such a distance D. This defines an operator |D, called a distance operator, which transforms any two sets of valuations V and W into the set V |D W of all elements of W that are closest to V. This operator |D defines naturally the revision of K by A as the set of all formulas satisfied in M(K) |D M(A) (i.e. those models of A that are closest to the models of K). This constitutes a distance-based revision operator. Lehmann et al. characterized families of them using a loop condition of arbitrarily big size. An interesting question is whether this loop condition can be replaced by a finite one. Extending the results of Schlechta, we will provide elements of negative answer. In fact, we will show that for families of distance operators, there is no "normal" characterization. Approximatively, a normal characterization contains only finite and universally quantified conditions. These results have an interest of their own for they help to understand the limits of what is possible in this area. Now, we are quite confident that this work can be continued to show similar impossibility results for distance-based revision operators, which suggests that the big loop condition cannot be simplified

    Belief Change in Reasoning Agents: Axiomatizations, Semantics and Computations

    Get PDF
    The capability of changing beliefs upon new information in a rational and efficient way is crucial for an intelligent agent. Belief change therefore is one of the central research fields in Artificial Intelligence (AI) for over two decades. In the AI literature, two different kinds of belief change operations have been intensively investigated: belief update, which deal with situations where the new information describes changes of the world; and belief revision, which assumes the world is static. As another important research area in AI, reasoning about actions mainly studies the problem of representing and reasoning about effects of actions. These two research fields are closely related and apply a common underlying principle, that is, an agent should change its beliefs (knowledge) as little as possible whenever an adjustment is necessary. This lays down the possibility of reusing the ideas and results of one field in the other, and vice verse. This thesis aims to develop a general framework and devise computational models that are applicable in reasoning about actions. Firstly, I shall propose a new framework for iterated belief revision by introducing a new postulate to the existing AGM/DP postulates, which provides general criteria for the design of iterated revision operators. Secondly, based on the new framework, a concrete iterated revision operator is devised. The semantic model of the operator gives nice intuitions and helps to show its satisfiability of desirable postulates. I also show that the computational model of the operator is almost optimal in time and space-complexity. In order to deal with the belief change problem in multi-agent systems, I introduce a concept of mutual belief revision which is concerned with information exchange among agents. A concrete mutual revision operator is devised by generalizing the iterated revision operator. Likewise, a semantic model is used to show the intuition and many nice properties of the mutual revision operator, and the complexity of its computational model is formally analyzed. Finally, I present a belief update operator, which takes into account two important problems of reasoning about action, i.e., disjunctive updates and domain constraints. Again, the updated operator is presented with both a semantic model and a computational model

    The lexicographic closure as a revision process

    Full text link
    The connections between nonmonotonic reasoning and belief revision are well-known. A central problem in the area of nonmonotonic reasoning is the problem of default entailment, i.e., when should an item of default information representing "if A is true then, normally, B is true" be said to follow from a given set of items of such information. Many answers to this question have been proposed but, surprisingly, virtually none have attempted any explicit connection to belief revision. The aim of this paper is to give an example of how such a connection can be made by showing how the lexicographic closure of a set of defaults may be conceptualised as a process of iterated revision by sets of sentences. Specifically we use the revision process of Nayak.Comment: 7 pages, Nonmonotonic Reasoning Workshop 2000 (special session on belief change), at KR200
    corecore