10,432 research outputs found

    On Isolating Points Using Disks

    Full text link

    Symbolic-Numeric Tools for Analytic Combinatorics in Several Variables

    Full text link
    Analytic combinatorics studies the asymptotic behaviour of sequences through the analytic properties of their generating functions. This article provides effective algorithms required for the study of analytic combinatorics in several variables, together with their complexity analyses. Given a multivariate rational function we show how to compute its smooth isolated critical points, with respect to a polynomial map encoding asymptotic behaviour, in complexity singly exponential in the degree of its denominator. We introduce a numerical Kronecker representation for solutions of polynomial systems with rational coefficients and show that it can be used to decide several properties (0 coordinate, equal coordinates, sign conditions for real solutions, and vanishing of a polynomial) in good bit complexity. Among the critical points, those that are minimal---a property governed by inequalities on the moduli of the coordinates---typically determine the dominant asymptotics of the diagonal coefficient sequence. When the Taylor expansion at the origin has all non-negative coefficients (known as the `combinatorial case') and under regularity conditions, we utilize this Kronecker representation to determine probabilistically the minimal critical points in complexity singly exponential in the degree of the denominator, with good control over the exponent in the bit complexity estimate. Generically in the combinatorial case, this allows one to automatically and rigorously determine asymptotics for the diagonal coefficient sequence. Examples obtained with a preliminary implementation show the wide applicability of this approach.Comment: As accepted to proceedings of ISSAC 201

    Efficiently Computing Real Roots of Sparse Polynomials

    Full text link
    We propose an efficient algorithm to compute the real roots of a sparse polynomial fR[x]f\in\mathbb{R}[x] having kk non-zero real-valued coefficients. It is assumed that arbitrarily good approximations of the non-zero coefficients are given by means of a coefficient oracle. For a given positive integer LL, our algorithm returns disjoint disks Δ1,,ΔsC\Delta_{1},\ldots,\Delta_{s}\subset\mathbb{C}, with s<2ks<2k, centered at the real axis and of radius less than 2L2^{-L} together with positive integers μ1,,μs\mu_{1},\ldots,\mu_{s} such that each disk Δi\Delta_{i} contains exactly μi\mu_{i} roots of ff counted with multiplicity. In addition, it is ensured that each real root of ff is contained in one of the disks. If ff has only simple real roots, our algorithm can also be used to isolate all real roots. The bit complexity of our algorithm is polynomial in kk and logn\log n, and near-linear in LL and τ\tau, where 2τ2^{-\tau} and 2τ2^{\tau} constitute lower and upper bounds on the absolute values of the non-zero coefficients of ff, and nn is the degree of ff. For root isolation, the bit complexity is polynomial in kk and logn\log n, and near-linear in τ\tau and logσ1\log\sigma^{-1}, where σ\sigma denotes the separation of the real roots

    Combinatorial Sutured TQFT as Exterior Algebra

    Full text link
    The idea of a sutured topological quantum field theory was introduced by Honda, Kazez and Mati\'c (2008). A sutured TQFT associates a group to each sutured surface and an element of this group to each dividing set on this surface. The notion was originally introduced to talk about contact invariants in Sutured Floer Homology. We provide an elementary example of a sutured TQFT, which comes from taking exterior algebras of certain singular homology groups. We show that this sutured TQFT coincides with that of Honda et al. using Z2\Z_2-coefficients. The groups in our theory, being exterior algebras, naturally come with the structure of a ring with unit. We give an application of this ring structure to understanding tight contact structures on solid tori
    corecore