50 research outputs found

    Investigating the performance of transport infrastructure using real-time data and a scalable multi-modal agent based model

    Get PDF
    The idea that including more information in more dynamic and iterative ways is central to the promise of the big data paradigm. The hope is that via new data sources, such as remote sensors and mobile phones, the reliance on heavily simplified generalised functions for model inputs will be erased. This trade between idealised and actual empirical data will be matched with dynamic models which consider complexity at a fundamental level, inherently mirroring the systems they are attempting to replicate. Cloud computing brings the possibility of doing all of this, in less time than the simplified macro models of the past, thus enabling better answers and at the time of critical decision making junctures. This research was task driven - the question of high speed rail versus aviation led to an investigation into the simplifications and assumptions that back up many of the commonly held beliefs on the sustainability of different modes of transport. The literature ultimately highlighted the need for context specific information; actual load factors, actual journey times considering traffic/engineering works and so on. Thus, rather than being explicitly an exercise in answering a specific question, a specific question was used to drive the development of a tool which may hold promise for answering a range of transportation related questions. The original contributions of this work are, firstly the use of real-time data sources to quantify temporally and spatially dynamic network performance metrics (eg. journey times on different transport models) and secondly to organise these data sources in a framework which can handle the volume and type of the data and organise the data in a way so that it is useful for the dynamic agent based modelling of future scenarios.EPSRC I Case Studentship with Ove Arup & Partner

    Seventh Biennial Report : June 2003 - March 2005

    No full text

    New Perspectives on Modelling and Control for Next Generation Intelligent Transport Systems

    Get PDF
    This PhD thesis contains 3 major application areas all within an Intelligent Transportation System context. The first problem we discuss considers models that make beneficial use of the large amounts of data generated in the context of traffic systems. We use a Markov chain model to do this, where important data can be taken into account in an aggregate form. The Markovian model is simple and allows for fast computation, even on low end computers, while at the same time allowing meaningful insight into a variety of traffic system related issues. This allows us to both model and enable the control of aggregate, macroscopic features of traffic networks. We then discuss three application areas for this model: the modelling of congestion, emissions, and the dissipation of energy in electric vehicles. The second problem we discuss is the control of pollution emissions in eets of hybrid vehicles. We consider parallel hybrids that have two power units, an internal combustion engine and an electric motor. We propose a scheme in which we can in uence the mix of the two engines in each car based on simple broadcast signals from a central infrastructure. The infrastructure monitors pollution levels and can thus make the vehicles react to its changes. This leads to a context aware system that can be used to avoid pollution peaks, yet does not restrict drivers unnecessarily. In this context we also discuss technical constraints that have to be taken into account in the design of traffic control algorithms that are of a microscopic nature, i.e. they affect the operation of individual vehicles. We also investigate ideas on decentralised trading of emissions. The goal here is to allocate the rights to pollute fairly among the eet's vehicles. Lastly we discuss the usage of decentralised stochastic assignment strategies in traffic applications. Systems are considered in which reservation schemes can not reliably be provided or enforced and there is a signifficant delay between decisions and their effect. In particular, our approach facilitates taking into account the feedback induced into traffic systems by providing forecasts to large groups of users. This feedback can invalidate the predictions if not modelled carefully. At the same time our proposed strategies are simple rules that are easy to follow, easy to accept, and significantly improve the performance of the systems under study. We apply this approach to three application areas, the assignment of electric vehicles to charging stations, the assignment of vehicles to parking facilities, and the assignment of customers to bike sharing stations. All discussed approaches are analysed using mathematical tools and validated through extensive simulations

    Eight Biennial Report : April 2005 – March 2007

    No full text

    High-Performance Modelling and Simulation for Big Data Applications

    Get PDF
    This open access book was prepared as a Final Publication of the COST Action IC1406 “High-Performance Modelling and Simulation for Big Data Applications (cHiPSet)“ project. Long considered important pillars of the scientific method, Modelling and Simulation have evolved from traditional discrete numerical methods to complex data-intensive continuous analytical optimisations. Resolution, scale, and accuracy have become essential to predict and analyse natural and complex systems in science and engineering. When their level of abstraction raises to have a better discernment of the domain at hand, their representation gets increasingly demanding for computational and data resources. On the other hand, High Performance Computing typically entails the effective use of parallel and distributed processing units coupled with efficient storage, communication and visualisation systems to underpin complex data-intensive applications in distinct scientific and technical domains. It is then arguably required to have a seamless interaction of High Performance Computing with Modelling and Simulation in order to store, compute, analyse, and visualise large data sets in science and engineering. Funded by the European Commission, cHiPSet has provided a dynamic trans-European forum for their members and distinguished guests to openly discuss novel perspectives and topics of interests for these two communities. This cHiPSet compendium presents a set of selected case studies related to healthcare, biological data, computational advertising, multimedia, finance, bioinformatics, and telecommunications

    Topology Reconstruction of Dynamical Networks via Constrained Lyapunov Equations

    Get PDF
    The network structure (or topology) of a dynamical network is often unavailable or uncertain. Hence, we consider the problem of network reconstruction. Network reconstruction aims at inferring the topology of a dynamical network using measurements obtained from the network. In this technical note we define the notion of solvability of the network reconstruction problem. Subsequently, we provide necessary and sufficient conditions under which the network reconstruction problem is solvable. Finally, using constrained Lyapunov equations, we establish novel network reconstruction algorithms, applicable to general dynamical networks. We also provide specialized algorithms for specific network dynamics, such as the well-known consensus and adjacency dynamics.Comment: 8 page

    Public policy modeling and applications

    Full text link
    corecore