6,364 research outputs found

    Bidimensionality of Geometric Intersection Graphs

    Full text link
    Let B be a finite collection of geometric (not necessarily convex) bodies in the plane. Clearly, this class of geometric objects naturally generalizes the class of disks, lines, ellipsoids, and even convex polygons. We consider geometric intersection graphs GB where each body of the collection B is represented by a vertex, and two vertices of GB are adjacent if the intersection of the corresponding bodies is non-empty. For such graph classes and under natural restrictions on their maximum degree or subgraph exclusion, we prove that the relation between their treewidth and the maximum size of a grid minor is linear. These combinatorial results vastly extend the applicability of all the meta-algorithmic results of the bidimensionality theory to geometrically defined graph classes

    Recognizing Visibility Graphs of Polygons with Holes and Internal-External Visibility Graphs of Polygons

    Full text link
    Visibility graph of a polygon corresponds to its internal diagonals and boundary edges. For each vertex on the boundary of the polygon, we have a vertex in this graph and if two vertices of the polygon see each other there is an edge between their corresponding vertices in the graph. Two vertices of a polygon see each other if and only if their connecting line segment completely lies inside the polygon, and they are externally visible if and only if this line segment completely lies outside the polygon. Recognizing visibility graphs is the problem of deciding whether there is a simple polygon whose visibility graph is isomorphic to a given input graph. This problem is well-known and well-studied, but yet widely open in geometric graphs and computational geometry. Existential Theory of the Reals is the complexity class of problems that can be reduced to the problem of deciding whether there exists a solution to a quantifier-free formula F(X1,X2,...,Xn), involving equalities and inequalities of real polynomials with real variables. The complete problems for this complexity class are called Existential Theory of the Reals Complete. In this paper we show that recognizing visibility graphs of polygons with holes is Existential Theory of the Reals Complete. Moreover, we show that recognizing visibility graphs of simple polygons when we have the internal and external visibility graphs, is also Existential Theory of the Reals Complete.Comment: Sumbitted to COCOON2018 Conferenc

    On k-Convex Polygons

    Get PDF
    We introduce a notion of kk-convexity and explore polygons in the plane that have this property. Polygons which are \mbox{kk-convex} can be triangulated with fast yet simple algorithms. However, recognizing them in general is a 3SUM-hard problem. We give a characterization of \mbox{22-convex} polygons, a particularly interesting class, and show how to recognize them in \mbox{O(nlogn)O(n \log n)} time. A description of their shape is given as well, which leads to Erd\H{o}s-Szekeres type results regarding subconfigurations of their vertex sets. Finally, we introduce the concept of generalized geometric permutations, and show that their number can be exponential in the number of \mbox{22-convex} objects considered.Comment: 23 pages, 19 figure

    Newton polygons and curve gonalities

    Full text link
    We give a combinatorial upper bound for the gonality of a curve that is defined by a bivariate Laurent polynomial with given Newton polygon. We conjecture that this bound is generically attained, and provide proofs in a considerable number of special cases. One proof technique uses recent work of M. Baker on linear systems on graphs, by means of which we reduce our conjecture to a purely combinatorial statement.Comment: 29 pages, 18 figures; erratum at the end of the articl
    corecore